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a b s t r a c t

This paper introduces a novel symplectic wavelet collocation method for solving nonlinear
Hamiltonian wave equations. Based on the autocorrelation functions of Daubechies com-
pactly supported scaling functions, collocation method is conducted for the spatial discret-
ization, which leads to a finite-dimensional Hamiltonian system. Then, appropriate
symplectic scheme is employed for the integration of the Hamiltonian system. Under the
hypothesis of periodicity, the properties of the resulted space differentiation matrix are
analyzed in detail. Conservation of energy and momentum is also investigated. Various
numerical experiments show the effectiveness of the proposed method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Due to the symplectic geometric structures, Hamiltonian systems are useful for modeling physical process with negligible
dissipative effects and have been applied to various fields involving weather prediction, nonlinear optics, oceanography and
quantum field theory and so on. It is of much significance to preserve the intrinsic properties of the original problem during
numerical simulations, i.e. to preserve the symplectic geometric structure of the Hamiltonian system. And various symplec-
tic approaches have been developed [4,6,7,11,13,15,16,23,24,31]. One standard method to obtain symplectic method for an
infinite-dimensional Hamiltonian PDE is that, first discretize the Hamiltonian PDE in space to obtain a finite-dimensional
Hamiltonian system, and then evolve the semi-discrete system in time by symplectic integrators [27,28]. In this numerical
procedure, the key for success is to ensure that the obtained semi-discrete system is a finite-dimensional Hamiltonian ODE
system, for which finite difference method (FDM) [6], finite element method (FEM) [33], Fourier pseudospectral method [14]
can be utilized, but not well for singular problems [20]. To develop an effective and robust numerical method for the space
discretization of a Hamiltonian system whose solution is of singularity or sharp transition motivates the current work.

Wavelet-based numerical methods have gained popularity as they take the advantages of both spectral method and FDM
(or FEM), which makes the methods very attractive for solving singular problems (see [19–22,25]). Compared with FDM and
FEM, wavelet-based methods can have higher order of accuracy, and compared with spectral method, wavelet-based meth-
ods have good spatial localization and generate a sparse space differentiation matrix. The wavelet-based algorithms can be
roughly classified into two categories: wavelet-Galerkin and wavelet collocation, which can been utilized to construct sym-
plectic algorithms. In [11] and [12], Daubechies’ compactly supported orthogonal wavelets and second-generation wavelets
are proposed to combine with symplectic schemes to construct multiresolution symplectic solvers for wave propagation
problems and the method is of wavelet-Galerkin type. However, the two papers lack theoretical analysis and numerical sim-
ulations. And, following the proposed method, it is very difficult to deal with nonlinearities, as it needs the passage between
the wavelet space and physical space, which is not cost-effective in computations.
. All rights reserved.
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To address the above issues, symplectic wavelet collocation method (abbr. SWCM) is proposed for Hamiltonian wave
equations in this paper. Nonlinear wave (NLW) equation and nonlinear Schrödinger (NLS) equation are tested. The main con-
tributions of the work go as follows:

1. The wavelet collocation method is applied for the first time to construct symplectic schemes. The collocation method is
based on the autocorrelation functions of Daubechies compactly supported scaling functions. After discretizing spatially
by the wavelet collocation method, we have obtained a semi-discrete finite-dimensional Hamiltonian system, which is
proved theoretically. Symplectic Runge–Kutta methods are then used for the time integration. The autocorrelation func-
tion initially proposed in [25] has the merits of symmetry and nice interpolation properties, which leads to that the inter-
polation coefficients are exactly the numerical solutions at collocation points. Hence no additional computation is
required for the determination of the passage between the wavelet and physical space, which renders the whole proce-
dure very efficient.

2. Under the hypothesis of regularity and periodicity, the properties of space differentiation matrix are investigated in
detail, which is very useful for analyzing the performance of the proposed method. Furthermore, the convergence of
the proposed method is proved theoretically and it is concluded that the method is of high order of accuracy in space.
Based on the nice properties of the space differentiation matrix, conservation of invariants is also investigated.

3. Various numerical experiments for the NLW and NLS equations are conducted to substantiate the theoretical results. All
the experimental results show that the developed symplectic method captures singularities very well. In addition, the
method has exponential convergence rate in space. When the support interval of the autocorrelation function becomes
larger, the method will possesses similar accuracy with pseudospectral method. However, the SWCM demands less com-
putations because of the sparseness of the space differentiation matrix, which has been numerically proved as well. The
numerical results show that SWCM takes a good balance of accuracy and efficiency. Finally, the data statistics of the
errors of invariants demonstrate our theoretical analysis very well.

The rest of the paper is organized as follows. In Section 2, preliminaries about the nonlinear wave equation and its dis-
cretization methods are recalled. Autocorrelation functions and their interpolation operators are also presented. In Section 3,
SWCM is introduced and the properties of the space differentiation matrix are discussed in detail. The convergence property
and conservation of Hamiltonian and momentum are also analyzed. In Section 4, SWCM is generalized to NLS equation. In
Section 5, numerical experiments for NLW and NLS equations with symmetric and nonsymmetric initial conditions are con-
ducted to illustrate the effectiveness of the method. Finally, concluding remarks are given in Section 6.

2. Preliminaries about the nonlinear wave equation and wavelet

2.1. Nonlinear wave equation

We consider the nonlinear wave equation with periodic boundary condition
utt ¼ uxx � F 0ðuÞ; uða; tÞ ¼ uðb; tÞ; x 2 ½a; b�; t 2 ½0; T�; ð1Þ
where F : R! R is a smooth function. The equation is used to model nonlinear phenomena such as the propagation of dis-
locations in crystals and the behavior of elementary particles. It is also used in soliton theory. The equation is a classical
example of Hamiltonian PDEs. The Hamiltonian formulation goes as
ut ¼ v ;
v t ¼ uxx � F 0ðuÞ

�
ð2Þ
for which the Hamiltonian
Hðu; vÞ ¼ 1
2

Z
v2 þ u2

x þ 2FðuÞ
� �

dx ð3Þ
and momentum
M ¼ �
Z

utux dx ð4Þ
are invariant with respect to time.

2.2. Discretization method for the NLW equation

To solve (2) numerically, a standard solution procedure starts with the discretization of the equation in space and then
does the time integration. The spatial discretization results in the following semi-discrete system
dUhðtÞ
dt ¼ VhðtÞ;

dVhðtÞ
dt ¼ AhUhðtÞ � F 0ðUhðtÞÞ;

(
ð5Þ
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where h is the space step, UhðtÞ and VhðtÞ are the approximate solutions at time t. In order to preserve the symplectic form of
(2), an appropriate numerical discretization scheme needs to be developed in the sense that the above resulting semi-dis-
crete system (continuous in time) can be written as a finite-dimensional Hamiltonian system. For this purpose, the numer-
ical scheme is required to be able to preserve the symmetric property of second-order differential operator embedded in (2).
Several methods can be chosen such as the finite difference method (FDM), finite element method (FEM) and Fourier pseudo-
spectral method.

The Fourier pseudospectral method can lead to a symmetric spectral differentiation matrix with high accuracy [14],
which is a full matrix and normally requires expensive computations. However, the differentiation matrix obtained by a suit-
able choice of wavelets is symmetric and sparse. The wavelet-based method has some advantages over the traditional FDM,
FEM and spectral method [11,12] while there are no theoretical analysis and numerical simulations, which renders the read-
ers unsure about the effectiveness of the method.

In this paper, a wavelet collocation method will be used for the spatial discretization of the Hamiltonian wave equation
for the first time. The autocorrelation functions of Daubechies scaling functions will be used as trial functions, which make
the second-order differentiation matrix be symmetric and sparse. The resulting spatial discretization is a good balance of
accuracy (Fourier pseudospectral method) and efficiency (FDM or FEM). The details of the proposed wavelet collocation
method will be given in Section 3 next, before which the properties of autocorrelation functions and the interpolation oper-
ator are presented in the following.

2.3. Wavelet and multiresolution

A Daubechies scaling function /ðxÞ of order M (in short, DM) satisfies the scaling relation:
/ðxÞ ¼
XM�1

k¼0

hk/ð2x� kÞ; ð6Þ
where M is a positive even integer and fhkgM�1
k¼0 are M non-vanishing ‘‘filter coefficients”. The function has its support in the

interval ½0;M � 1� and it has ðM=2� 1Þ vanishing wavelet moments. Furthermore, a multiresolution analysis can be con-
ducted on L2ðRÞ [10].

Define the autocorrelation function hðxÞ of /ðxÞ (in short, ADM) as
hðxÞ ¼ ð/ � /ð��ÞÞðxÞ ¼
Z

/ðxÞ/ðt � xÞdt: ð7Þ
Suppose that Vj is the linear span of fhj;kðxÞ ¼ 2j=2hð2jx� kÞ; k 2 Zg, then it can be proved that ðVjÞj2Z forms a multiresolution
analysis where hðxÞ plays the role of scaling function. The function hðxÞ has nice properties as follows:

1. Compactly supported:
suppðhðxÞÞ ¼ ½�M þ 1;M � 1�: ð8Þ
2. Interpolation property:
hðlÞ ¼
Z

/ðxÞ/ðx� lÞdx ¼ d0;l; l 2 Z: ð9Þ
3. Derivative property: the odd-order derivative of hðxÞ is an odd function, and the even-order derivative of hðxÞ is an even
function, i.e.
h2kð�xÞ ¼ h2kðxÞ; h2kþ1ð�xÞ ¼ �h2kþ1ðxÞ; l ¼ 0;1;2; . . . ð10Þ
4. Scaling property: the autocorrelation coefficients of the filter H ¼ fhkgM�1
k¼1 are
ck ¼ 2
XM�1�k

l¼0

hlhlþk; k ¼ 1; . . . ;M � 1 ð11Þ
and
c2k ¼ 0; k ¼ 1; . . . ;M=2� 1; ð12Þ
based on which a scaling relation similar to (6) [1,9] can be derived as
hðxÞ ¼ hð2xÞ þ 1
2

XM=2

l¼1

c2l�1ðhð2x� 2lþ 1Þ þ hð2xþ 2l� 1ÞÞ: ð13Þ
There is no analytical expression for hðkÞðxÞ ðk ¼ 0;1;2; . . .Þ, but the values at dyadic points can be computed up to the ma-
chine precision. The values of the function hðkÞðxÞ at integer points x ¼ l ðl ¼ 0;�1; . . . ;�ðM � 1ÞÞ can be obtained by solving
an eigenvalue problem which is derived from the scaling relation (13) [1,21]. Then, the values of hðkÞðxÞ ðk ¼ 0;1;2; . . .Þ at
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Fig. 1. (a) Daubechies scaling function D10, (b) its autocorrelation function h, (c) first derivative h0 and (d) second derivative h00 .
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dyadic points can be computed recursively from the values at integer points using the matrix method [10,21]. For illustra-
tions, the scaling function and its autocorrelation function of D10 are shown in Fig. 1.

Define an interpolation operator on Vj (with the space step h ¼ 2�j) as
IjuðxÞ ¼ 2�
j
2
X

k

uð2�jkÞhj;kðxÞ ¼
X

k

uð2�jkÞhð2jx� kÞ; ð14Þ
then the following estimate on the interpolation error holds [25].

Lemma 2.1. Let 0 6 r 6 s 6 2M � 1; s P 1, and u 2 HsðRÞ, then
ku� Ijukr 6 C2�jðs�rÞkuks; ð15Þ
where k � kr and k � ks denote the norm of Sobolev space HrðRÞ and HsðRÞ, respectively.
3. Symplectic wavelet collocation method for the NLW equation

3.1. Symplectic wavelet collocation method

Wavelet collocation method is used for space discretization which result in a finite-dimensional Hamiltonian system. The
Hamiltonian system is then integrated in time by symplectic methods.

3.1.1. Wavelet collocation method for space discretization
In this section, a wavelet collocation method, which is based on the autocorrelation function hðxÞ of the compactly sup-

ported Daubechies scaling functions, is used for space discretization, and the discretized system is proved to be a Hamilto-
nian system under periodic boundary conditions.

Consider the NLW equation (2) with the spatial domain being ½a; b�, where a and b are integers. We use the autocorrelation
function hðxÞ of Daubechies scaling function DM in the framework of a collocation method. Taking a fixed scale J ¼ constant,
we approximate uðx; tÞ and vðx; tÞ by interpolation operators IJuðx; tÞ and IJvðx; tÞ on VJ , respectively, which interpolate uðx; tÞ
and vðx; tÞ at collocation points xm ¼ aþm=2J , for m ¼ 0;1; . . . ;N � 1; N ¼ ðb� aÞ � 2J . The interpolation operators IJuðx; tÞ
and IJvðx; tÞ have the form
uJðx; tÞ ¼ IJuðx; tÞ ¼
XN�1

m¼0

uðxm; tÞhð2Jx� ða � 2J þmÞÞ; ð16Þ

v Jðx; tÞ ¼ IJvðx; tÞ ¼
XN�1

m¼0

vðxm; tÞhð2Jx� ða � 2J þmÞÞ: ð17Þ
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According to the interpolating property of hðxÞ (9), we have

uJðxm; tÞ ¼ uðxm; tÞ;v Jðxm; tÞ ¼ vðxm; tÞ:
Applying the wavelet collocation method for the space discretization of system (2), we obtain
ðuJðxm; tÞÞt ¼ v Jðxm; tÞ;
ðv Jðxm; tÞÞt ¼ ðuJðx; tÞÞxxjx¼xm

� F 0ðuJðxm; tÞÞ:

(
ð18Þ
To obtain the equations for uJðxm; tÞ and v Jðxm; tÞ, the crucial step is to express the kth-order spatial partial derivatives
@kuJ ðx;tÞ
@xk

n o
at collocation points xm in terms of the values uJðxm; tÞ. This is done by making k-times differential with (16) and

evaluating the resulting expressions at collocation points xm:
@kuJðx; tÞ
@xk

�����
xm

¼
XN�1

m0¼0

uðxm0 ; tÞ �
dkhð2Jx�m0Þ

dxk

�����
xm

¼ ðBkUJÞm; ð19Þ
where Bk is a N � N matrix with elements
ðBkÞm;m0 ¼
dkhð2Jx�m0Þ

dxk

�����
xm

¼ 2kJhðkÞðm�m0Þ
and UJ ¼ ðuJðx0; tÞ;uJðx1; tÞ; . . . ;uJðxN�1; tÞÞT .
Now, we investigate the properties of the space differentiation matrix Bk. Since hðxÞ is locally supported within the inter-

val ½�M þ 1;M � 1�, we have that ðBkÞm;m0 ¼ 0 for m0 < m�M þ 1 and m0 > mþM � 1. Considering periodic boundary con-
ditions, the space differentiation matrix Bk can be expressed as
ðBkÞm;m0 ¼

2kJhðkÞðm�m0Þ; m� ðM � 1Þ 6 m0 6 mþ ðM � 1Þ;
2kJhðkÞð�lÞ; m�m0 ¼ N � l; 1 6 l 6 M � 1;

2kJhðkÞðlÞ; m0 �m ¼ N � l; 1 6 l 6 M � 1;

0; otherwise:

8>>>><
>>>>:

ð20Þ
Obviously, Bk is a N � N sparse matrix with ð2M � 1Þ nonzero elements in each row, and we have
ðBkUJÞm ¼
XmþM�1

m0¼m�Mþ1

uJðxm0 Þ2kJhðkÞðm�m0Þ:
In particular for the autocorrelation function of D4, the matrix Bk can be expressed as
Bk ¼ 2kJ

b0 b�1 b�2 b�3 b3 b2 b1

b1 b0 b�1 b�2 b�3 b3 b2

b2 b1 b0 b�1 b�2 b�3 b3

b3 b2 b1 b0 b�1 b�2 b�3

. .
.

b3 b2 b1 b0 b�1 b�2 b�3

b�3 b3 b2 b1 b0 b�1 b�2

b�2 b�3 b3 b2 b1 b0 b�1

b�1 b�2 b�3 b3 b2 b1 b0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

where bl ¼ hðkÞðlÞ and l is an integer in �3 6 l 6 3. The properties of Bk are presented in detail in the following theorem.

Theorem 3.1. For the autocorrelation function of Daubechies scaling function DM, the space differentiation matrix Bk in (19) has
the following properties:

(1) B2k is symmetric, and B2kþ1 is antisymmetric.
(2) Bk is a circulant matrix with bandwidth of 2M � 1, and B2kB2k0þ1 is a antisymmetric circulant matrix with a bandwidth of

4M � 3. Recursively, B2kB2k0 and B2kþ1B2k0þ1 are symmetric circulant matrixes with bandwidth of 4M � 3.
(3) The eigenvalues of circulant matrix Bk are
kj ¼ ĥðkÞðxjÞ; xj ¼ �
2p
N

j; j ¼ 0;1; . . . ;N � 1;

where ĥðkÞðxÞ is the Fourier transform of hðkÞðxÞ. And the following equality holds

FBkF� ¼ diagðĥðkÞðx0Þ; ĥðkÞðx1Þ; . . . ; ĥðkÞðxN�1ÞÞ;

where F� is the Fourier matrix.

(4) B4kþ2 is negative semidefinite, and B4k is positive semidefinite.
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Proof

(1) Because hð2kÞð�xÞ ¼ hð2kÞðxÞ and hð2kþ1Þð�xÞ ¼ �hð2kþ1ÞðxÞ, we have
ðB2kÞm0 ;m ¼ 22kJhð2kÞðm0 �mÞ ¼ 22kJhð2kÞðm�m0Þ ¼ ðB2kÞm;m0 ; m� ðM � 1Þ 6 m0 6 mþ ðM � 1Þ

and

ðB2kÞm0 ;m ¼ 22kJhð2kÞð�lÞ ¼ 22kJhð2kÞðlÞ ¼ ðB2kÞm;m0 ; m�m0 ¼ N � l;1 6 l 6 M � 1;

which shows that B2k is a symmetric matrix. Similarly, it can be proved that B2kþ1 is an antisymmetric matrix.

(2) Denote the first row of the matrix 2�kJBk as
ðc0; c1; . . . ; cN�1Þ ¼ ðhðkÞð0Þ; hðkÞð�1Þ; . . . ; hðkÞð�ðM � 1ÞÞ;0; . . . ;0; hðkÞðM � 1Þ; . . . ; hðkÞð1ÞÞ;

from which it can be concluded that Bk is a circulant matrix and Bk ¼ 2kJ � Circðc0; c1; . . . ; cN�1Þ. Obviously, the band-
width of Bk is 2M � 1. Let B2k ¼ ðaijÞ; B2k0þ1 ¼ ðbijÞ and C ¼ B2kB2k0þ1 ¼ ðcijÞ, and we consider the items
fcijjM � 1 < i; j < N � ðM � 1Þg in C. Since B2k and B2k0þ1 have the same bandwidth of 2M � 1, then cij ¼ 0 for
ji� jj > 2M � 2. Suppose i > j, we have

cij ¼
XN

m¼1

aimbmj ¼
XjþM�1

m¼i�ðM�1Þ
2Jð2kþ2k0þ1Þhð2lÞði�mÞhð2k0þ1Þðm� jÞ ¼

Xj�iþM�1

r¼�ðM�1Þ
2Jð2kþ2k0þ1Þhð2lÞð�rÞhð2k0þ1Þðr þ i� jÞ

and

cji ¼
XN

m¼1

ajmbmi ¼
XjþM�1

m¼i�ðM�1Þ
2Jð2kþ2k0þ1Þhð2kÞðj�mÞhð2k0þ1Þðm� iÞ ¼ �

Xj�iþM�1

r¼�ðM�1Þ
2Jð2kþ2k0þ1Þhð2kÞð�rÞhð2k0þ1Þðr þ i� jÞ ¼ �cij:

In the same way, it can be proved that cji ¼ �cij for i; j P N � ðM � 1Þ and i; j 6 M � 1. Thus, C is antisymmetric. More-
over, we have

ci;2i�j ¼ �c2i�j;i ¼ �
Xi�ð2i�jÞþM�1

r¼�ðM�1Þ
2Jð2kþ2k0þ1Þhð2kÞð�rÞhð2k0þ1Þðr þ ð2i� jÞ � iÞ

¼ �
Xi�ð2i�jÞþM�1

r¼�ðM�1Þ
2Jð2kþ2k0þ1Þhð2kÞð�rÞhð2k0þ1Þðr þ ð2i� jÞ � iÞ ¼ �ci;j:

Therefore, B2kB2k0þ1 is an antisymmetric circulant matrix with a bandwidth of 2ð2M � 2Þ þ 1.Similarly, B2kB2k0 and
B2kþ1B2k0þ1 are symmetric circulant matrices with bandwidth of 4M � 3.
(3) Suppose Bk ¼ 2kJC; C ¼ Circðc0; c1; . . . ; cN�1Þ, then there exists a Fourier matrix F� [17] such that
FCF� ¼ diagðfCðf0Þ; fCðf1Þ; . . . ; fCðfN�1ÞÞ;

where fCðxÞ ¼ c0 þ c1xþ � � � þ cN�1xN�1; f ¼ e
2p
N i ði ¼

ffiffiffiffiffiffiffi
�1
p

Þ, and

F� ¼ 1ffiffiffiffi
N
p

1 1 1 � � � 1
1 f f2 � � � fN�1

1 f2 f4 � � � f2ðN�1Þ

� � � � � � � � � � � � � � �
1 fN�1 f2ðN�1Þ � � � fðN�1ÞðN�1Þ

0
BBBBBB@

1
CCCCCCA
:

Now consider the spectrum SpecC ¼ ðfCðfjÞÞ. Because fN ¼ 1, we obtain

kjðCÞ ¼ fCðfjÞ ¼ c0 þ c1ðfjÞ þ � � � þ cN�1ðfjÞN�1 ¼ hðkÞð0Þ þ
XM�1

r¼1

hðkÞð�rÞðfjÞr þ
XM�1

r¼1

hðkÞðrÞðfjÞðN�rÞ ¼
XM�1

r¼�ðM�1Þ
hðkÞðrÞðfjÞ�r

:

In addition, ĥðkÞðxÞ, the Fourier transform of hðkÞðxÞ [8], can be expressed as

ĥðkÞðxÞ ¼
X
n2Z
jûðxþ 2pnÞj2ð�iÞkðxþ 2pnÞk;

which can be written as

ĥðkÞðxÞ ¼
X

r

hðkÞðrÞeirx:
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Thus,

kjðCÞ ¼
XM�1

r¼�ðM�1Þ
hðkÞðrÞðfjÞ�r ¼

XM�1

r¼�ðM�1Þ
hðkÞðrÞ e

2p
N i

� ��jr
¼

XM�1

r¼�ðM�1Þ
hðkÞðrÞeir �j2p

Nð Þ ¼ ĥðkÞ �j
2p
N

	 

:

Therefore,

kjðBkÞ ¼ 2kJ ĥðkÞðxjÞ; xj ¼ �j
2p
N
; j ¼ 0;1; . . . ;N � 1:
(4) First, for k0 we get
k0ð2�kJBkÞ ¼ ĥðkÞð0Þ ¼
X

r

hðkÞðrÞ ¼ 0:

Then, consider the other eigenvalues kj, for j ¼ 1; . . . ;N � 1.For B4kþ2, we have

kjð2�ð4kþ2ÞJB4kþ2Þ ¼ ĥð4kþ2ÞðxjÞ ¼
X
n2Z
jûðxj þ 2pnÞj2ð�iÞ4kþ2ðxj þ 2pnÞ4kþ2 ¼

X
n2Z
jûðxj þ 2pnÞj2ð�1Þðxj þ 2pnÞ4kþ2

< 0:

Therefore, B4kþ2 is negative semidefinite.Similarly, for B4k, we have

kjð2�4kJB4kÞ ¼ ĥð4kÞðxjÞ ¼
X
n2Z
jûðxj þ 2pnÞj2ð�iÞ4kðxj þ 2pnÞ4k ¼

X
n2Z
jûðxj þ 2pnÞj2 � 1 � ðxj þ 2pnÞ4k > 0:

Therefore, B4k is positive semidefinite. This completes the proof of Theorem 3.1. h
Combining (18) with the differentiation matrix B2, we arrive at the wavelet collocation semi-discretization for the non-
linear wave equation (2)
d
dt uJðxm; tÞ ¼ v Jðxm; tÞ;
d
dt v Jðxm; tÞ ¼ ðB2UJÞm � F 0ðuJðxm; tÞÞ;

(
ð21Þ
where m ¼ 0;1; . . . ;N � 1; UJ ¼ ðuJðx0; tÞ;uJðx1; tÞ; . . . ;uJðxN�1; tÞÞT . Note that the unknowns uJðxm; tÞ and v Jðxm; tÞ in (21) are
exactly the values of the approximate solution at the collocation points and no extra computation is required for the deter-
mination of the passage between wavelet coefficients and physical space.

Since B2 is symmetric, the semi-discrete system (21) is a finite-dimensional Hamiltonian system [3,26]. Let

Z ¼ ðUJ;VJÞT ; J ¼ 0 IN

�IN 0

� �
, then (21) can be rewritten as
Zt ¼ JrZHðZÞ ð22Þ

with the Hamiltonian
HðUJ ;VJÞ ¼
1
2
hVJ ;VJi þ hFðUJÞ;1i �

1
2
hUJ; B2UJi; ð23Þ
where h�; �i is the standard inner product.
The Hamiltonian system (22) satisfies the semi-discrete symplectic conservation law
d
dt

XN�1

m¼0

duJðxm; tÞ ^ dv Jðxm; tÞ ¼ 0;
where ^ is the wedge product.

3.1.2. Symplectic methods for time discretization
The semi-discrete finite-dimensional Hamiltonian system (22) can be discretized in time by lots of symplectic methods,

such as generating function methods, Runge–Kutta methods, composition methods [18,24], and explicit symplectic schemes
for separable Hamiltonian systems. Here we consider Runge–Kutta methods. By noting f ðZÞ ¼ JrZHðZÞ, a symplectic Runge–
Kutta method for the system (22) with s stage variables fKlg and coefficients falmg; fblg, can be written as
Kl ¼ Zn þ s �
Ps

m¼1
almf ðKmÞ;

Znþ1 ¼ Zn þ s �
Ps
l¼1

blf ðKlÞ;

8>>><
>>>:

1 6 l 6 s;
where s is the time-step. When s ¼ 1; a11 ¼ 1=2; b1 ¼ 1, we have
Znþ1 ¼ Zn þ s � JrZH
Zn þ Znþ1

2

 !
;
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which leads to the Euler-centered scheme in time, which is also known as the implicit midpoint scheme. In this paper, we
use this scheme for time discretization.

Integrating the semi-discrete system (21) in time by the Euler-centered scheme, we obtain a symplectic wavelet colloca-
tion method for the NLW equation (1):
Unþ1
J ¼ Un

J þ s � Vn
J þVnþ1

J

2 ;

Vnþ1
J ¼ Vn

J þ s � B2 �
Un

J þUnþ1
J

2 � F 0
Un

J þUnþ1
J

2

	 
	 

:

8><
>: ð24Þ
Suppose Un
J ;V

n
J

� �
are given. We first solve the following equation for Vnþ1

J ,
Vnþ1
J ¼ Vn

J þ s � B2 � Un
J þ s �

Vn
J þ Vnþ1

J

4

 !
� F 0 Un

J þ s �
Vn

J þ Vnþ1
J

4

 ! !
; ð25Þ
then Unþ1
J are obtained as
Unþ1
J ¼ Un

J þ s �
Vn

J þ Vnþ1
J

2
: ð26Þ
Remark. The SWCM (24) is equivalent to the following scheme by eliminating the value VJ ,
Unþ1
J � 2Un

J þ Un�1
J

s2 ¼ B2
Unþ1

J þ 2Un
J þ Un�1

J

4

 !
� 1

2
F 0

Unþ1
J þ Un

J

2

 !
þ F 0

Un�1
J þ Un

J

2

 ! !
: ð27Þ
Although the SWCM (24) or (27) is an implicit scheme, the space differentiation matrix is sparse and iteration methods can
be used in solving, such as Newton Successive Over Relaxation Method (N-SOR) and fixed-point iteration method, which render
the proposed SWCM much efficient.
3.2. Theoretical analysis for SWCM

3.2.1. Convergence of SWCM
In this paper, our analysis is restricted to the SWCM using the Euler-centered scheme in time. We shall estimate the error

of the proposed SWCM and prove that the scheme is stable and convergent. First, the truncation error of the SWCM is con-
sidered. With k � k we will indicate the L2ða; bÞ norm.

Theorem 3.2. Suppose uðx; tÞ 2 Hsða; bÞ; s P 5
2 ; 8t 2 ½0; T�; uðx; tÞ 2 C4ða; bÞ; 8x 2 ½a; b�. Let FðuÞ be a smooth function. Then the

truncation error Rn of the SWCM (24) satisfies
kRnk 6 Oðs2 þ 2�Jðs�2ÞÞ:
Proof. Let Un ¼ ðuðx0; tnÞ;uðx1; tnÞ; . . . ; uðxN�1; tnÞÞ be the solution of (2). Based on Taylor expanding, the following equations
can be obtained,
Unþ1 � 2Un þ Un�1 ¼ s2Un
tt þ Oðs4Þ;

Unþ1 þ 2Un þ Un�1 ¼ 4Un þ s2Un
tt þ Oðs4Þ;
and
1
2

F 0
Unþ1 þ Un

2

 !
þ F 0

Un�1 þ Un

2

 ! !
� F 0ðUnÞ ¼ s2 � U

n
tt

4
� F 00ðUnÞ þ Oðs4Þ:
Hence, the truncation error of the SWCM (24) goes as
Rn ¼ Unþ1 � 2Un þ Un�1

s2 � B2
Unþ1 þ 2Un þ Un�1

4

 !
þ 1

2
F 0

Unþ1 þ Un

2

 !
þ F 0

Un�1 þ Un

2

 ! !

¼ Un
tt þ Oðs2Þ � B2 Un þ s2

4
Un

tt þ Oðs4Þ
	 


þ 1
2

F 0
Unþ1 þ Un

2

 !
þ F 0

Un�1 þ Un

2

 ! !
� Un

tt � Un
xx þ F 0ðUnÞ


 �

¼ Un
xx � B2Un � B2

s2

4
Un

tt

	 

þ 1

2
F 0

Unþ1 þ Un

2

 !
þ F 0

Un�1 þ Un

2

 ! !
� F 0ðUnÞ þ Oðs2Þ

¼ Un
xx � B2Un � s2 1

4
B2Un

tt

	 

þ s2 1

4
Un

tt � F
00ðUnÞ

	 

þ Oðs2Þ:
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From Lemma 2.1, we get
un
xx � hxxun

�� ��
L2 6 kun � Ijunk2 6 C2�Jðs�2Þkunks;
where k � ksdenotes the norm of Soblev space Hsða; bÞ. Notice that
Un
xx � B2Un�� �� ¼ XN�1

m¼0

2�J � un
xxðxmÞ � hxxunðxmÞ

� �2

( )1=2
is the rectangle quadrature rule approximation to un
xx � hxxun

�� ��
L2 . Therefore, we get the error estimate
kRnk 6 Un
xx � B2Un�� ��þ s2 1

4
B2Un

tt

����
����þ s2 1

4
Un

tt � F
00ðUnÞ

����
����þ Oðs2Þ 6 Oð2�Jðs�2Þ þ s2Þ:
This completes the proof. h

Then, the following error estimate of the SWCM is obtained.

Theorem 3.3. Suppose uðx; tÞ and FðuÞ are the same as in Theorem 3.2 . Let Un and Un
J be the solutions of (2) and (27),

respectively, and en ¼ Un � Un
J . Then the error estimate of the SWCM (24) at time T satisfies
keLk 6 Oðs2 þ 2�Jðs�2ÞÞ; L ¼ T
s
:

Proof. The truncation error of the SWCM (24) can be written as
Rn ¼ enþ1 � 2en þ en�1

s2 � B2
enþ1 þ 2en þ en�1

4

	 

þ 1

2
F 0 Unþ1=2

J

� �
þ F 0 Un�1=2

J

� �� �
� F 0ðUnÞ: ð28Þ
Define
dtenþ1=2 ¼ enþ1 � en

s

and make inner product of the both sides of (28) with dtenþ1=2 þ dten�1=2, it follows that
1
s
ðkdtenþ1=2k2 � kdten�1=2k2Þ þ 1

s
ðh�B2enþ1=2; enþ1=2i � h�B2en�1=2; en�1=2iÞ

¼ � 1
2

F 0 Unþ1=2
J

� �
þ F 0 Un�1=2

J

� �� �
� F 0ðUnÞ; dtenþ1=2 þ dten�1=2

� �
þ hRn; dtenþ1=2 þ dten�1=2i:
Next, define a discrete function Wn as
Wn ¼ kdtenþ1=2k2 þ kenk2 þ kenþ1k2 þ h�B2enþ1=2; enþ1=2i:

In order to estimate Wn, several inequations are employed here. First, since F 0ðUÞ satisfies
F 0 Unþ1=2
J

� �
� F 0ðUnþ1=2Þ

��� ��� ¼ kF 0ðUnþ1=2 � enþ1=2Þ � F 0ðUnþ1=2Þk 6 Ckenþ1=2k;
where C ¼ maxx2½a;b�;t2½0;T�F
0ðuðx; tÞÞ, it follows that
1
2

F 0 Unþ1=2
J

� �
þ F 0 Un�1=2

J

� �� �
� F 0ðUnÞ; dtenþ1=2 þ dten�1=2

� �

6
1
2

Cðkenþ1=2k þ ken�1=2kÞkdtenþ1=2 þ dten�1=2k 6 1
4

Cðkenþ1k2 þ 2kenk2 þ ken�1k2Þ þ 1
2

Cðkdtenþ1=2k2 þ kdten�1=2k2Þ:
Then, from Theorem 3.2, the matrix �B2 is symmetric and positive semidefinite, hence
h�B2enþ1=2; enþ1=2iP 0: ð29Þ

In addition, notice that
kenþ1k2 � ken�1k2

s
¼ henþ1 þ en�1; dtenþ1=2 þ dten�1=2i 6 kenþ1k2 þ kenk2 þ ken�1k2 þ kdtenþ1=2k2 þ kdten�1=2k2

:

Therefore, we have
Wn �Wn�1

s
¼ kdtenþ1=2k2 � kdten�1=2k2

s
þ h�B2enþ1=2; enþ1=2i

s
� h�B2en�1=2; en�1=2i

s
þ ke

nþ1k2 � ken�1k2

s

¼ hRn; dtenþ1=2 þ dten�1=2i � 1
2

F 0 Unþ1=2
J

� �
þ F 0 Un�1=2

J

� �� �
� F 0ðUnÞ; dtenþ1=2 þ dten�1=2

� �
þ ke

nþ1k2 � ken�1k2

s

6 kRnk2 þ kdtenþ1=2k2 þ kdten�1=2k2 þ 1
4

Cðkenþ1k2 þ 2kenk2 þ ken�1k2Þ þ 1
2

Cðkdtenþ1=2k2 þ kdten�1=2k2Þ

þ kenþ1k2 þ kenk2 þ ken�1k2 þ kdtenþ1=2k2 þ kdten�1=2k2

6 An þ C1ðWn þWn�1Þ;
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where C1 ¼ 2þ C
2. And the estimate of WL can be obtained by using Gronwall inequation [30],
WL
6 W0 þ s

XL

k¼1

Ak

 !
e4C1T : ð30Þ
Because
ke0k2 ¼ kR0k2 ¼ 0; ke1k2 ¼ Oðs2 þ 2�Jðs�2ÞÞ2;
we have
W0 ¼ Oðs2 þ 2�Jðs�2ÞÞ2:
In addition, from Theorem 3.2, we have
Ak ¼ kRnk2 ¼ Oðs2 þ 2�Jðs�2ÞÞ2:
And based on the Gronwall inequation, it follows that
WL ¼ kdteLþ1=2k2 þ keLk2 þ keLþ1k2 þ h�B2eLþ1=2; eLþ1=2i 6 C � Oðs2 þ 2�Jðs�2ÞÞ2:
Finally, we have obtained the error estimate as
keLk 6 Oðs2 þ 2�Jðs�2ÞÞ:
This completes the proof. h

In a similar deductive procedure, a symplectic wavelet collocation method using s-stage Runge–Kutta method for time
discretization has 2s-order in time.

3.2.2. Conservation of discretized Hamiltonian and momentum
3.2.2.1. Discretized Hamiltonian. Assume F 00ðuÞ and ut have uniform bounds both in space and time, then the following error
estimate of the Hamiltonian holds.

Theorem 3.4. Using the symplectic wavelet collocation method (24) , we have
hHL
h � hH0

h

��� ��� ¼ Oðs2Þ; L ¼ T
s
:

Proof. Suppose ðUJ;VJÞ is the solution of the symplectic wavelet collocation method (24), and define Hnþ1=2
h as
Hh Unþ1=2
J ;Vnþ1=2

J

� �
¼ Vnþ1=2

J ;Vnþ1=2
J

D E
þ F Unþ1=2

J

� �
;1

D E
� Unþ1=2

J ; B2Unþ1=2
J

D E
:

Then, by taking inner products of (27) with 2
s Unþ1=2

J � Un�1=2
J

� �
, we obtain
hHnþ1=2
h � hHn�1=2

h ¼ �h
1
2

F 0 Unþ1=2
J

� �
þ F 0 Un�1=2

J

� �� �
;Unþ1=2

J � Un�1=2
J

� �
þ h F Unþ1=2

J

� �
� F Un�1=2

J

� �
;1

D E

¼ h
XN�1

m¼0

Z unþ1=2
J

ðxmÞ

un�1=2
J ðxmÞ

F 0ðuJÞdu� 1
2

F 0 unþ1=2
J ðxmÞ

� �
þ F 0 un�1=2

J ðxmÞ
� �� �

unþ1=2
J ðxmÞ � un�1=2

J ðxmÞ
� �" #

¼ h
XN�1

m¼0

� 1
12

F 000ð~umÞ unþ1=2
J ðxmÞ � un�1=2

J ðxmÞ
� �3

� �
¼ h

XN�1

m¼0

� 1
12

F 000ð~umÞðutðxm;~tmÞÞ3s3
� �

;

where ~um 2 min un�1=2
J ðxmÞ;unþ1=2

J ðxmÞ
� �

;max un�1=2
J ðxmÞ;unþ1=2

J ðxmÞ
� �h i

, and ~tm 2 ðtn�1=2; tnþ1=2Þ. Thus, the following estimate
holds
hHnþ1=2
h � hHn�1=2

h

��� ��� ¼ h
XN�1

m¼0

� 1
12
� F 000ð~umÞ � ðutðxm;~tmÞÞ3 � s3

� ������
����� 6 hC

XN�1

m¼0

s3

�����
����� 6 C � ðb� aÞ � s3;
where C ¼maxx2½a;b�;t2½0;T� F 000u ðuðx; tÞÞ � ðutðx; tÞÞ3
��� ���.

Therefore,
hHL
h � hH0

h

��� ��� 6 2 �
XL

n¼1

hHnþ1=2
h � hHn�1=2

h

��� ��� 6 2 � C � ðb� aÞ � T � s2 ¼ Oðs2Þ:
This completes the proof. h
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3.2.2.2. Discretized momentum. The discrete momentum is hMhðUJ;VJÞ with
MhðUJ ;VJÞ ¼ �hVJ; B1UJi; ð31Þ
where B1 is the wavelet collocation approximation to the first order derivative.
For a symmetric space discretization, the momentum is conserved through the integration for symmetric initial condi-

tions. Although it is not conserved for general initial conditions, it is approximated very well. The details have been discussed
in [3]. Now, the results associated with the wavelet collocation space discretization are proposed.

Case 1. Symmetric initial conditions
In this case, the initial value ðU0;V0Þ satisfy
DU0 ¼ U0; DV0 ¼ V0;
where
D ¼

0 0 � � � 1
..
.

� 0
..
.

1 ..
.

1 � � � 0

0
BBBBB@

1
CCCCCA

N�N

:

Theorem 3.5. Assume the initial condition is symmetric, and the wavelet collocation method is employed for space discretization,
it happens that
MhðUJðtÞ;VJðtÞÞ ¼ �hVJðtÞ;B1UJðtÞi ¼ 0:
Proof. As proved in Theorem 3.1, B2 is a symmetric circulant matrix, we have
DB2 ¼ B2D:
Then, the solution of (21) is symmetric for any time t, and it satisfies
DUJðtÞ ¼ UJðtÞ; t > 0:
Consequently, VJðtÞ ¼ _UJðtÞ is also symmetric, and
DVJðtÞ ¼ VJðtÞ; t > 0:
In addition, B1 is an antisymmetric circulant matrix, thus
DB1 ¼ �B1D:
Therefore,
hVJðtÞ; B1UJðtÞi ¼ hDVJðtÞ;DB1UJðtÞi ¼ �hDVJðtÞ; B1DUJðtÞi ¼ �hVJðtÞ; B1UJðtÞi;
from which the theorem follows. h

Theorem 3.6. Under the hypothesis of Theorem 3.5 , the numerical approximation Un
J ;V

n
J

� �
at tn of system (21) given by sym-

plectic time integrator satisfies
Mh Un
J ;V

n
J

� �
¼ Vn

J ;B1Un
J

D E
¼ 0:
Case 2. General initial conditions

In this case, the continuous momentum does not vanish, but it is well approximated. The following estimate is obtained.

Theorem 3.7. Suppose uðx; tÞ 2 Hsða; bÞ; 8t 2 ½0; T�, and FðuÞ is a smooth function. Using the wavelet collocation discretization B1

in (19) , it happens that
d
dt

hhVJðtÞ; B1UJðtÞi 6 Oð2�Jðs�1ÞÞ:
Proof. Since B1 and B2B1 are antisymmetric (proved in Theorem 3.1), we have
hB2UJ ;B1UJi ¼ UT
J B2B1UJ ¼ hUJ; B2B1UJi ¼ 0;
then
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d
dt

hhVJðtÞ; B1UJðtÞi ¼ hhB2UJðtÞ � F 0ðUJðtÞÞ;B1UJðtÞi þ hVJðtÞ; B1VJðtÞi ¼ hhB2UJðtÞ � F 0ðUJðtÞÞ;B1UJðtÞi

¼ hhF 0ðUJðtÞÞ;B1UJðtÞi:
Notice that hhF 0ðUJðtÞÞ;B1UJðtÞi is the rectangle quadrature rule approximation to
R b

a fJðtÞdx , where
fJðtÞ ¼ F 0ðuJðtÞÞ
d
dx
ðFðuJðtÞÞÞ:
As uJðtÞ is periodic in ½a; b�;
R b

a fJðtÞdx ¼ 0. Denote the approximation by Q RðfJðtÞÞ, it follows that
Q RðfJðtÞÞ ¼ Q RðIJðfJðtÞÞÞ ¼
Z b

a
IJðfJðtÞÞdx ¼

Z b

a
ðIJðfJðtÞÞ � fJðtÞÞdxþ

Z b

a
fJðtÞdx ¼

Z b

a
ðIJðfJðtÞÞ � fJðtÞÞdx:
Since uðx; tÞ 2 Hsða; bÞ; 8t 2 ½0; T�, then, fJðtÞ 2 Hs�1ða; bÞ; 8t 2 ½0; T�. According to Lemma 2.1, it can be concluded that
Z b

a
ðIJðfJðtÞÞ � fJðtÞÞdx 6 Oð2�Jðs�1ÞÞ:
Therefore, the theorem is valid since QRðfJðtÞÞ 6 Oð2�Jðs�1ÞÞ. h
4. Symplectic wavelet collocation method for the NLS equation

We briefly consider the NLS equation
iut þ uxx þ bjuj2u ¼ 0; ð32Þ
where b > 0 is a constant parameter. Let uðx; tÞ ¼ pðx; tÞ þ iqðx; tÞ, where pðx; tÞ and qðx; tÞ are real functions, the Hamiltonian
formulation of (32) is
pt ¼ �qxx � bðp2 þ q2Þq;
qt ¼ pxx þ bðp2 þ q2Þp:

(
ð33Þ
In this system, the following global quantities are conserved [3]
H ¼ 1
2

Z 1

�1
p2

x þ q2
x �

b
2
ðp2 þ q2Þ2

� �
dx;

I1 ¼ �
1
2

Z 1

�1
½p2 þ q2�dx;

I2 ¼
1
2

Z 1

�1
½pqx � qpx�dx:
After wavelet collocation discretization in space, (33) becomes
d
dt pJðxm; tÞ ¼ �ðB2Q JÞm � bðpJðxm; tÞ2 þ qJðxm; tÞ2ÞqJðxm; tÞ;
d
dt qJðxm; tÞ ¼ ðB2PJÞm þ bðpJðxm; tÞ2 þ qJðxm; tÞ2ÞpJðxm; tÞ;

(
ð34Þ
where xm ¼ aþm=2J; m ¼ 0;1; . . . ;N � 1; N ¼ ðb� aÞ � 2J and PJ ¼ ðpJðx0; tÞ; pJðx1; tÞ; . . . ; pJðxN�1; tÞÞT ; QJ ¼ ðqJðx0; tÞ; qJðx1;

tÞ; . . . ; qJðxN�1; tÞÞT . Discretizing this system by the Euler-centered scheme in time, we obtain the standard symplectic wavelet
collocation method for the NLS equation:
Pnþ1
J ¼ Pn

J � s B2 � Q nþ1=2
J þ b Pnþ1=2

J

� �
�2 þ Q nþ1=2

J

� �
�2

� �
� Q nþ1=2

J

� �
;

Q nþ1
J ¼ Qn

J þ s B2 � Pnþ1=2
J þ b Q nþ1=2

J

� �
�2 þ Pnþ1=2

J

� �
�2

� �
� Pnþ1=2

J

� �
;

8><
>: ð35Þ
where
Pnþ1=2
J ¼

Pn
J þ Pnþ1

J

2
; Pnþ1=2

J

� �
�2 ¼ Pnþ1=2

J

� �T
Pnþ1=2

J

� �
:

The discrete Hamiltonian is
HhðPJ;QJÞ ¼ �
1
2
hQ J; B2Q Ji þ hPJ; B2PJi þ

b
2
hðPJ �2 þ Q J�2Þ�2;1i

� �
:



2562 H. Zhu et al. / Journal of Computational Physics 229 (2010) 2550–2572
According to the results in [3], the following results can be easily obtained for the special properties of the space differen-
tiation matrix:

(R1) For wavelet collocation method, B2 is symmetric,
I1;h ¼ �
1
2
½hPJ; PJi þ hQJ ;Q Ji�

is a first integral of semi-discretization Hamiltonian system (34).

(R2) As B2 is symmetric, by using symplectic Runge–Kutta method for time discretization, it happens that
hI1;h Pn
J ;Q

n
J

� �
� hI1;h P0

J ;Q
0
J

� �
¼ 0; n > 0:

What’s more, the discretization of the continuous invariant I2 is

I2;h ¼
1
2
½hPJ ;B1QJi � hQ J; B1PJi�: ð36Þ

Then, exactly in the same way as in Theorem 3.5, the following result holds.

(R3) Assume the initial condition is symmetric, when the wavelet collocation method is taken for space discretization, it

happens that
I2;hðPJ ;Q JÞ ¼
1
2
½hPJ; B1Q Ji � hQ J;B1PJi� ¼ 0: ð37Þ

Also after full discretization, similar to Theorem 3.6, we can gain the following result.� �

(R4) Under hypothesis of (R3), the numerical approximation Pn

J ;Q
n
J at tn of system (34) given by symplectic time inte-

grator satisfies
I2;h Pn
J ;Q

n
J

� �
¼ 0:
In the following section, various numerical experiments will be conducted to substantiate the above theoretical analysis.

5. Numerical investigation for the NLW and NLS equations

In this section, numerical experiments are presented for the NLW and NLS equations to illustrate the following numerical
characters of the proposed SWCM: (1) high order of accuracy; (2) long time simulation; (3) conservation of invariants; (4)
singularity capturing.

For convenience, the SWCM taking B2 based on the autocorrelation function of Daubechies scaling function DM is called
SWCM with ADM (abbr. SWCM-ADM).

5.1. Numerical simulation for the NLW equation

To gain insight into the performance of the proposed SWCM (24) for the NLW equation (2), the following numerical
experiments are performed. To show the advantage of the proposed method, a singular linear problem is considered in
Example 5.1. Space and time accuracy of the SWCM-AD10 is tested and SWCM is compared with other methods with differ-
ent spatial discretization. To illustrate the properties of the SWCM in long time simulating and invariants conserving, long
time simulation are made for the NLW equation and the errors in invariants are given in Examples 5.2 and 5.3. In addition,
symmetric and nonsymmetric initial conditions are simulated to confirm the results about conservation of invariants and the
SWCM-AD10 is used for solving those problems.

Example 5.1. An accuracy test is taken by considering the linear wave equation
utt ¼ uxx ð38Þ
with symmetric initial conditions
uðx; 0Þ ¼ f ðxÞ ¼ expð�3200x2Þ; vðx; 0Þ ¼ 0: ð39Þ
This problem is singular and the true solution is
uðx; tÞ ¼ 1
2
½f ðxþ tÞ þ f ðx� tÞ�:
First, the problem is considered in the spatial interval ½�1;1� till time T ¼ 0:6 for accuracy test. Fixed-point iteration
method with tolerance 10�30 is used to solve (24). The space and time accuracy of the SWCM (24) with AD10 are tested.
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The L2 and L1 errors, as well as the numerical order of accuracy, are contained in Tables 1 and 2. As expected, the errors
decrease at an exponential rate with respect to the space grid number N. For example, the L1 error decreases from
5:1928� 10�2 to 1:0387� 10�6 when N changes from 128 to 1024. In addition, the scheme has second-order of accuracy
in time, which agrees with Theorem 3.3.

For the purpose of numerical comparisons, we consider a symplectic Fourier pseudospectral method (abbr. SFPSM), which
uses the pseudospectral scheme in space and the Euler-centered scheme in time, and a symplectic finite difference method
(abbr. SFDM), which uses the fourth-order central difference scheme in space and the Euler-centered scheme in time. SWCM
is compared with those methods from spatial accuracy and CPU time aspects. Table 3 shows the numerical errors and CPU
time of SWCM (with different ADM), SFPSM and SFDM. SWCM is of higher order of accuracy than SFDM. The errors of SWCM
decrease in an exponential rate in space for each ADM and the decreasing rate is increasing when M becomes larger. In
addition, for a given grid number N, the errors of SWCM will approximate to those of SFPSM when M becomes larger.
Moreover, SWCM-AD20 with N ¼ 512 takes less CPU time than SFPSM with N ¼ 256, which tell us that SWCM is more
efficient than SFPSM to obtain similar approximation for this singular problem. Furthermore, the errors of SFPSM increase
when N changes from 256 to 512, while the errors of SWCM are still decrease rapidly. These numerical results seems to
reveal that SWCM takes a good balance of accuracy (SFPSM) and efficiency (SFDM).

Second, the problem is solved in ½�1;1� till T ¼ 100 with periodic boundary condition by using SWCM-AD20. As shown in
Fig. 2, the problem is well simulated, the two wave forms of smaller amplitudes travel in opposite directions and meet at
x ¼ �1 or x ¼ 0. This result is obtained by taking s ¼ 0:0001 and N ¼ 512.

Example 5.2. Consider the kink–antikink solution of the sine-Gordon equation [5]
Table 2
Time ac

s

0.00
0.00
0.00
0.00

Table 3
Compar

N ¼
L1
L2

CP

N ¼
L1
L2

CP

N ¼
L1
L2

CP

Table 1
Space a

J

6
7
8
9

utt ¼ uxx � sinðuÞ ð40Þ
with symmetric initial conditions
u0ðxÞ ¼ 0; v0ðxÞ ¼ 4csechðcxÞ: ð41Þ
curacy test of the SWCM-AD10 for (38) with initial condition (39) ðJ ¼ 9; N ¼ 1024Þ.

Error Order

L1 L2 L1 L2

04 2.8313e�3 5.8908e�4 – –
02 7.0068e�4 1.4702e�4 2.0146 2.0025
01 1.7273e�4 3.6407e�5 2.0202 2.0137
005 4.0642e�5 8.7782e�6 2.0875 2.0522

ison of the SWCM, SFPSM and SFDM for (38) with initial condition (39) ðs ¼ 0:0000002Þ.

SWCM-AD10 SWCM-AD20 SWCM-AD30 SFPSM SFDM

128
errors 0.15 5.70E�02 4.31E�02 6.19E�03 0.18

errors 5.19E�02 2.28E�02 1.63E�02 3.88E�03 5.73E�02
U (s) 442.81 836.03 1230.42 2296.58 177.77

256
errors 3.35E�02 2.59E�03 5.33E�04 8.78E�06 6.86E�02

errors 9.79E�03 6.87E�04 1.62E�04 9.41E�06 1.54E�02
U (s) 889.14 1734.31 2526.36 8886.75 358.19

512
errors 9.09E�04 7.85E�07 5.93E�09 3.46E�05 6.99E�03

errors 1.89E�04 1.53E�07 1.27E�09 3.77E�05 1.38E�03
U (s) 1988.19 3896.39 6173.52 215981.06 760.03

ccuracy test of the SWCM-AD10 for (38) with initial condition (39) ðs ¼ 0:0000002Þ.

N Error Order

L1 L2 L1 L2

128 0.1542 5.1928e�2 – –
256 3.3477e�2 9.7851e�3 2.2036 2.4079
512 9.0917e�4 1.8943e�4 5.2025 5.6908

1024 5.4464e�6 1.0387e�6 7.3831 7.5107
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Here c ¼ 20 is taken. These initial conditions correspond to two-soliton waves moving with speed c ¼ �1 in space and the
waves have large spatial gradients. This problem is solved in ½�30;30� till time T ¼ 200 by SWCM-AD10 with s ¼ 0:0005 and
N ¼ 3840. Fixed-point iteration method with tolerance 10�10 is used and CPU time is about 2776 s. As shown in Fig. 3, the
−1
−0.5

0
0.5

60

50

70

80

90

100

0

0.5

1
t

x

|u
|

Fig. 2. The wave propagation of (38) with initial condition (39), using SWCM-AD20 ðs ¼ 0:0001; N ¼ 512Þ.
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Fig. 3. Waveforms at t ¼ 140;150;160;180;200 and the wave propagation of (40) with initial condition (41) over time interval [0,200], using SWCM-AD10
ðs ¼ 0:0005; N ¼ 3840Þ.
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wave propagation is well simulated by the proposed method. In addition, Fig. 4 shows the variation of the errors in Hamil-
tonian and momentum in the time interval [0,200]. The error in momentum is less than 4:0� 10�9, which is negligible.
While the error in Hamiltonian is less than 2:5� 10�5. And the pronounced spikes in the error of Hamiltonian correspond
to the two kinks meet at x ¼ �30 or x ¼ 0.

Example 5.3. Consider the nonlinear wave equation (1) with

 
H

x 10R R O. 6

Table 4
The errors in invariants of SWCM

Energy/momentum
º323
FðuÞ ¼ 0:1u4 ð42Þ
and nonsymmetric initial conditions

N

u0ðxÞ ¼
5
2

e
cos x

5 � 5
2
; v0ðxÞ ¼ e

sin x
5 � 5

2
; x 2 ½0;2p�: ð43Þ

I

By taking a coordinate transform x ¼ pn, Eq. (1) can be transformed into
utt ¼
1
p2 unn � F 0ðuÞ; n 2 ½0;2�: 
Then, the problem is solved till time T ¼ 200 by SWCM-AD10 with s ¼ 0:002 and N ¼ 64. Fig. 5 shows the variation of the
errors in Hamiltonian and momentum in the time interval [0,200]. The error in Hamiltonian is less than 7:05� 10�6, while
the error in momentum is less than 4:65� 10�13.

Table 4 shows the L1 errors of Hamiltonian and momentum, which mean the maximum errors in the time interval. For
this nonsymmetric initial conditions, the error in momentum depends only on the space step h and decreases exponentially
in space, which agrees with Theorem 3.7; while the error in Hamiltonian depends only on the chosen time-step s and is
second-order in s, which agrees with Theorem 3.4.
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The above numerical simulations show that the proposed SWCM not only has high order of accuracy but also has good
properties in long time simulation and conservation of invariants. In the following subsection, we will present its
generalization to the NLS equation, which has some more singular and complex problems being difficult to simulate.
5.2. Numerical simulation for the NLS equation

In this subsection, one soliton solution, bound state solution and homoclinic structure of the NLS equation are simulated
in Examples 5.4–5.6. In Example 5.4, space and time accuracy of the SWCM-AD10 is tested and SWCM is also compared with
SFPSM and SFDM as that of the NLW equation. And for this nonsymmetric initial conditions, long time simulation is made
and how the invariant I2 changes according to the space step is also investigated. While in Examples 5.5 and 5.6, some more
singular and complex examples with symmetric initial conditions are proposed to confirm the results (R3) and (R4) and to
show the good-performance of the method in capturing singularity and preserving the spatial symmetry of solutions. Figures
about wave propagation and errors in invariants are given for each example. The errors in the three invariant quantities are
measured by the following way
Table 5
Space a

J

0
1
2
3

Table 6
Space a

J

0
1
2
3

hðHhðPn;Q nÞ � HhðP0;Q0ÞÞ;
hðI1;hðPn;QnÞ � I1;hðP0;Q 0ÞÞ;
hðI2;hðPn;QnÞ � I2;hðP0;Q 0ÞÞ:
Unless the contrary is stated, the standard value for the nonlinear constant in (33) is b ¼ 2.

Example 5.4. An accuracy test is taken for the NLS equation (32) with the one soliton solution [29]
uðx; tÞ ¼ sechðx� 4tÞexp 2i cx� 3
2

t
	 
	 


; ð44Þ
where c ¼ 1:0.
First, the problem is considered in ½�50;50� till time T ¼ 1 for accuracy test. Fixed-point iteration method with tolerance

10�30 is used to solve (35). The space accuracy of the SWCM (35) with AD10 is tested, The L2 and L1 errors and the numerical
order of accuracy are given in Tables 5 and 6. Notice that both errors decrease very quickly when the space grid number N
becomes larger. As shown in Table 5, the numerical orders measured by the L1 error are 2.0951, 5.3489 and 7.0731, which
means that the error decays at an exponential rate with respect to the space grid number N. So does the L2 error.

As shown in Tables 7 and 8, the errors of SWCM decrease in an exponential rate for each ADM and the decreasing rate is
increasing when M becomes larger. SWCM is of higher order of accuracy than SFDM. In addition, SWCM-AD30 seems to be as
accurate as SFPSM, but taking less CPU time than SFPSM. Moreover, the errors of SWCM are smaller than those of SFPSM
when N ¼ 800. These numerical results tell us again that SWCM takes a good balance of accuracy (SFPSM) and efficiency
(SFDM).

Second, the problem is solved in ½�30;220� till time T ¼ 50 by the SWCM-AD10 to test the property of long time
simulation. Time evolution of the soliton propagation can be found in Fig. 6, which is obtained by taking s ¼ 0:001 and
N ¼ 1000. Notice that the motion of the soliton is simulated very well. The variation of the errors in invariants are displayed
ccuracy test of the SWCM (35) for (32) with AD10 and initial condition (44), the real