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1. Introduction

Due to the symplectic geometric structures, Hamiltonian systems are useful for modeling physical process with negligible
dissipative effects and have been applied to various fields involving weather prediction, nonlinear optics, oceanography and
quantum field theory and so on. It is of much significance to preserve the intrinsic properties of the original problem during
numerical simulations, i.e. to preserve the symplectic geometric structure of the Hamiltonian system. And various symplec-
tic approaches have been developed [4,6,7,11,13,15,16,23,24,31]. One standard method to obtain symplectic method for an
infinite-dimensional Hamiltonian PDE is that, first discretize the Hamiltonian PDE in space to obtain a finite-dimensional
Hamiltonian system, and then evolve the semi-discrete system in time by symplectic integrators [27,28]. In this numerical
procedure, the key for success is to ensure that the obtained semi-discrete system is a finite-dimensional Hamiltonian ODE
system, for which finite difference method (FDM) [6], finite element method (FEM) [33], Fourier pseudospectral method [14]
can be utilized, but not well for singular problems [20]. To develop an effective and robust numerical method for the space
discretization of a Hamiltonian system whose solution is of singularity or sharp transition motivates the current work.

Wavelet-based numerical methods have gained popularity as they take the advantages of both spectral method and FDM
(or FEM), which makes the methods very attractive for solving singular problems (see [19-22,25]). Compared with FDM and
FEM, wavelet-based methods can have higher order of accuracy, and compared with spectral method, wavelet-based meth-
ods have good spatial localization and generate a sparse space differentiation matrix. The wavelet-based algorithms can be
roughly classified into two categories: wavelet-Galerkin and wavelet collocation, which can been utilized to construct sym-
plectic algorithms. In [11] and [12], Daubechies’ compactly supported orthogonal wavelets and second-generation wavelets
are proposed to combine with symplectic schemes to construct multiresolution symplectic solvers for wave propagation
problems and the method is of wavelet-Galerkin type. However, the two papers lack theoretical analysis and numerical sim-
ulations. And, following the proposed method, it is very difficult to deal with nonlinearities, as it needs the passage between
the wavelet space and physical space, which is not cost-effective in computations.
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To address the above issues, symplectic wavelet collocation method (abbr. SWCM) is proposed for Hamiltonian wave
equations in this paper. Nonlinear wave (NLW) equation and nonlinear Schrédinger (NLS) equation are tested. The main con-
tributions of the work go as follows:

1. The wavelet collocation method is applied for the first time to construct symplectic schemes. The collocation method is
based on the autocorrelation functions of Daubechies compactly supported scaling functions. After discretizing spatially
by the wavelet collocation method, we have obtained a semi-discrete finite-dimensional Hamiltonian system, which is
proved theoretically. Symplectic Runge-Kutta methods are then used for the time integration. The autocorrelation func-
tion initially proposed in [25] has the merits of symmetry and nice interpolation properties, which leads to that the inter-
polation coefficients are exactly the numerical solutions at collocation points. Hence no additional computation is
required for the determination of the passage between the wavelet and physical space, which renders the whole proce-
dure very efficient.

2. Under the hypothesis of regularity and periodicity, the properties of space differentiation matrix are investigated in
detail, which is very useful for analyzing the performance of the proposed method. Furthermore, the convergence of
the proposed method is proved theoretically and it is concluded that the method is of high order of accuracy in space.
Based on the nice properties of the space differentiation matrix, conservation of invariants is also investigated.

3. Various numerical experiments for the NLW and NLS equations are conducted to substantiate the theoretical results. All
the experimental results show that the developed symplectic method captures singularities very well. In addition, the
method has exponential convergence rate in space. When the support interval of the autocorrelation function becomes
larger, the method will possesses similar accuracy with pseudospectral method. However, the SWCM demands less com-
putations because of the sparseness of the space differentiation matrix, which has been numerically proved as well. The
numerical results show that SWCM takes a good balance of accuracy and efficiency. Finally, the data statistics of the
errors of invariants demonstrate our theoretical analysis very well.

The rest of the paper is organized as follows. In Section 2, preliminaries about the nonlinear wave equation and its dis-
cretization methods are recalled. Autocorrelation functions and their interpolation operators are also presented. In Section 3,
SWCM is introduced and the properties of the space differentiation matrix are discussed in detail. The convergence property
and conservation of Hamiltonian and momentum are also analyzed. In Section 4, SWCM is generalized to NLS equation. In
Section 5, numerical experiments for NLW and NLS equations with symmetric and nonsymmetric initial conditions are con-
ducted to illustrate the effectiveness of the method. Finally, concluding remarks are given in Section 6.

2. Preliminaries about the nonlinear wave equation and wavelet
2.1. Nonlinear wave equation

We consider the nonlinear wave equation with periodic boundary condition
Uy = Uy — F'(1), u(a,t)=u(b,t), x¢<]a,b], tel0,T], (1)

where F : R — R is a smooth function. The equation is used to model nonlinear phenomena such as the propagation of dis-
locations in crystals and the behavior of elementary particles. It is also used in soliton theory. The equation is a classical
example of Hamiltonian PDEs. The Hamiltonian formulation goes as

(v )

U = Uy — F(u)
for which the Hamiltonian
H(u, v) = % / (0% + 122 + 2F(u)] dx 3)
and momentum
M= —/u[uxdx 4)

are invariant with respect to time.
2.2. Discretization method for the NLW equation

To solve (2) numerically, a standard solution procedure starts with the discretization of the equation in space and then
does the time integration. The spatial discretization results in the following semi-discrete system

{dUdh[@ o (5)
PO = A UR(E) — F (Un(1)),
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where h is the space step, U, (t) and V,(t) are the approximate solutions at time t. In order to preserve the symplectic form of
(2), an appropriate numerical discretization scheme needs to be developed in the sense that the above resulting semi-dis-
crete system (continuous in time) can be written as a finite-dimensional Hamiltonian system. For this purpose, the numer-
ical scheme is required to be able to preserve the symmetric property of second-order differential operator embedded in (2).
Several methods can be chosen such as the finite difference method (FDM), finite element method (FEM) and Fourier pseudo-
spectral method.

The Fourier pseudospectral method can lead to a symmetric spectral differentiation matrix with high accuracy [14],
which is a full matrix and normally requires expensive computations. However, the differentiation matrix obtained by a suit-
able choice of wavelets is symmetric and sparse. The wavelet-based method has some advantages over the traditional FDM,
FEM and spectral method [11,12] while there are no theoretical analysis and numerical simulations, which renders the read-
ers unsure about the effectiveness of the method.

In this paper, a wavelet collocation method will be used for the spatial discretization of the Hamiltonian wave equation
for the first time. The autocorrelation functions of Daubechies scaling functions will be used as trial functions, which make
the second-order differentiation matrix be symmetric and sparse. The resulting spatial discretization is a good balance of
accuracy (Fourier pseudospectral method) and efficiency (FDM or FEM). The details of the proposed wavelet collocation
method will be given in Section 3 next, before which the properties of autocorrelation functions and the interpolation oper-
ator are presented in the following.

2.3. Wavelet and multiresolution

A Daubechies scaling function ¢(x) of order M (in short, DM) satisfies the scaling relation:
M-1
dX) = hp(2x — k), (6)
k=0

where M is a positive even integer and {hk}’,:”:’o] are M non-vanishing “filter coefficients”. The function has its support in the
interval [0,M — 1] and it has (M/2 — 1) vanishing wavelet moments. Furthermore, a multiresolution analysis can be con-
ducted on L*(R) [10].

Define the autocorrelation function 0(x) of ¢(x) (in short, ADM) as

000 = (=) = [ de0(t -2 e -

Suppose that V; is the linear span of {0, (x) = 2/20(2’x — k), k € Z}, then it can be proved that (V});ez forms a multiresolution
analysis where 0(x) plays the role of scaling function. The function 0(x) has nice properties as follows:

1. Compactly supported:
supp(0(x)) = [-M +1,M —1]. 8)
2. Interpolation property:

0 = [ d00(x - D =01, €2 o

3. Derivative property: the odd-order derivative of 0(x) is an odd function, and the even-order derivative of 0(x) is an even
function, i.e.
0 (—x) = 0% (x), 0" (—x) = —0"""(x), 1=0,1,2,... (10)

4. Scaling property: the autocorrelation coefficients of the filter H = {h,}}""}' are

M-1-k
=2 hhg, k=1,....M-1 (11)
=0
and
=0, k=1,... M/2 -1, (12)
based on which a scaling relation similar to (6) [1,9] can be derived as
M/2
0(x) = 0(2x) +% 2621,1(9(2)( =2l+1)+02x+21-1)). (13)
=1

There is no analytical expression for 6% (x) (k = 0,1,2,...), but the values at dyadic points can be computed up to the ma-
chine precision. The values of the function 6% (x) at integer points x = | (I = 0,+1,...,+(M — 1)) can be obtained by solving
an eigenvalue problem which is derived from the scaling relation (13) [1,21]. Then, the values of 0¥ (x) (k=0,1,2,...) at
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Fig. 1. (a) Daubechies scaling function D10, (b) its autocorrelation function 0, (c) first derivative ¢ and (d) second derivative 0".

dyadic points can be computed recursively from the values at integer points using the matrix method [10,21]. For illustra-
tions, the scaling function and its autocorrelation function of D10 are shown in Fig. 1.
Define an interpolation operator on V; (with the space step h = 2 J)as

=27 Z 27k) 00 (%) = > u27k)0(2x — k), (14)

k
then the following estimate on the interpolation error holds [25].
Lemma 2.1. Let 0 <r<s<2M -1, s > 1, and u € H*(R), then

lu = Lull, < €276 Jull, (15)

where || - ||, and || - ||, denote the norm of Sobolev space H'(R) and H’(R), respectively.

3. Symplectic wavelet collocation method for the NLW equation
3.1. Symplectic wavelet collocation method

Wavelet collocation method is used for space discretization which result in a finite-dimensional Hamiltonian system. The
Hamiltonian system is then integrated in time by symplectic methods.

3.1.1. Wavelet collocation method for space discretization

In this section, a wavelet collocation method, which is based on the autocorrelation function 6(x) of the compactly sup-
ported Daubechies scaling functions, is used for space discretization, and the discretized system is proved to be a Hamilto-
nian system under periodic boundary conditions.

Consider the NLW equation (2) with the spatial domain being [a, b], where a and b are integers. We use the autocorrelation
function 0(x) of Daubechies scaling function DM in the framework of a collocation method. Taking a fixed scale J = constant,
we approximate u(x, t) and v(x, t) by interpolation operators fju(x, t) and I; »(x, t) on V}, respectively, which interpolate u(x, t)
and v(x,t) at collocation points x,, = a+m/2/, for m=0,1,...,N—1, N= (b —a) - 2. The interpolation operators [u(x,t)
and [;»(x, t) have the form

N-1
w(x,t) = [u(x, t) Zu Xm, D)0(2'x — (a- 2 +m)), (16)
=0

vi(x,t) = [v(x,t) = ]v(xm, H02x —(a-2 +m)). (17)

m=0
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According to the interpolating property of 0(x) (9), we have
Uy (Xm, ) = U(Xpn, ), Vj(Xm, £) = V(Xp, 1).
Applying the wavelet collocation method for the space discretization of system (2), we obtain
(U](Xm, t))t = Uj(Xm, t)a
(U](va t))t = (U](X, t))xx'x:xm - F/(UJ(Xm, t))

To obtain the equations for uj(xm,t) and v(xn,t), the crucial step is to express the kth-order spatial partial derivatives

(18)

{%} at collocation points x,, in terms of the values u;(xn, t). This is done by making k-times differential with (16) and

evaluating the resulting expressions at collocation points x,:

oFuy(x, t il do2x —m
T =3 uat % = By, (19)
Xm m'=0 Xm
where By is a N x N matrix with elements
do2'x - m' )
(Bk)m.m/ = % _ zkje(k)(m —m')

and U; = (u;(Xo, t), (X1, £), ..., ty(xn_1, ).

Now, we investigate the properties of the space differentiation matrix By. Since 0(x) is locally supported within the inter-
val [-M + 1,M — 1], we have that (By),,,, =0 form'<m—-M+1 and m’ > m+ M — 1. Considering periodic boundary con-
ditions, the space differentiation matrix B, can be expressed as
29900 (m—m), m—-M-1)<m <m+(M-1);

2890 (1), m-m=N-11
28901y, m-m=N-11
0, otherwise.

Obviously, By is a N x N sparse matrix with (2M — 1) nonzero elements in each row, and we have

(B’()m.m’ = (20)

m+M-1
BUpp = > wxw)2Y0%(m—m).

m'=m-M+1

In particular for the autocorrelation function of D4, the matrix B, can be expressed as

bo by by b by by b
by bo by by b bs by
by by by by b, b bs
by by by by by b, b
B, =2Y :
bs by by by by by b
b_s bs by by by by b,
bo by by by by by b
by b, b bs b, b b

where b, = 0% (l) and I is an integer in —3 < | < 3. The properties of B, are presented in detail in the following theorem.

Theorem 3.1. For the autocorrelation function of Daubechies scaling function DM, the space differentiation matrix B, in (19) has
the following properties:

(1) By is symmetric, and By, is antisymmetric.
(2) By is a circulant matrix with bandwidth of 2M — 1, and BB, is a antisymmetric circulant matrix with a bandwidth of
4M — 3. Recursively, BB,y and Bay 1B,y are symmetric circulant matrixes with bandwidth of 4M — 3.
(3) The eigenvalues of circulant matrix By are
21,

2 =0M(w), ;= ~N =01 N-T

where 00 (w) is the Fourier transform of 6™ (x). And the following equality holds
FBF* = diag(0™ (wy), 0% (1), ..., 0% (wn_1)),

where F* is the Fourier matrix.
(4) Bai. is negative semidefinite, and By is positive semidefinite.
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(1) Because 0¥ (—x) = 0@¥ (x) and 0@V (—x) = —0@+V(x), we have

~—

—

(Bo)y m = 22020 (m' — m) = 2299 (m —m') = (By) m—M-1)<m <m+M-1)

mm’>

and

(Bak)y m = 229020 (=1) = 2290129 (1) = (By) m-m=N-11<I<M-1,

mm’>

which shows that By, is a symmetric matrix. Similarly, it can be proved that By, is an antisymmetric matrix.
Denote the first row of the matrix 2 ¥B; as

(€o,C1, ... Cno1) = (09(0), 00 (=1),...,0%9 (=M =1)),0,...,0,00 M =1),...,0%0(1)),

from which it can be concluded that By is a circulant matrix and B, = 2Y - Circ(co, €1, - ..,Cn_1). Obviously, the band-
width of By is 2M —1. Let By = (a;), By.q = (bj) and C=ByB,y., = (cj), and we consider the items
{cjiM -1<ij<N—-(M-1)} in C. Since By and B,y,; have the same bandwidth of 2M — 1, then ¢; =0 for
li—j| > 2M — 2. Suppose i > j, we have

N j+M-1 ) ) j-i+M-1 ) ’
Cij — Z aimbmj _ Z 2](2k+2k +1)9(21)(i _ m)H(Zk +1)(m 7]) _ Z 2](2k+2k +1)0<21)(*r)9(2k +1)(r + l 7])
m=1 =i-(M-1) r=—(M-1)
and
N j+M-1 , , Jj—i+M-1 , ,
Cji _ Z ajmbmi _ Z 2](2k+2k +1)0(2k)(i _ m)0(2k +1)(m _ l) — Z 2](2k+2k +l)0(2k)(_r)0(2k +1)(r + i _]) _ _Cij-
m=1 m=i—(M-1) r=—(M-1)
In the same way, it can be proved that ¢; = —c;; fori,j > N— (M — 1) and i,j < M — 1. Thus, C is antisymmetric. More-
over, we have
i—(2i—j)+M-1 , )
Cizij = —Caiji = — Z 2](2k+2k +1)0(2k)(_r)0(2k +1)(r + (21- _]) _ i)
r=—(M-1)
i—(2i—j)+M-1
_ Z 2](2k+2/(+1)9(2/@(71,)9(21@1)(1. +(i—j)—i) = ;.
r=—(M-1)

Therefore, ByB,y.; is an antisymmetric circulant matrix with a bandwidth of 2(2M — 2) + 1.Similarly, BB,y and
Boki1Byy,q are symmetric circulant matrices with bandwidth of 4M — 3.
Suppose B, = 2"’C, C = Circ(co, €1, - -.,CN_1), then there exists a Fourier matrix F* [17] such that

FCF* = diag(fC(CO)me(Cl)v LR 7fC(CN71))7
where fe(X) = Co + C1X + - - + cy_1xXN1, (=¥ (i = /1), and

1 1 1 1
1 ¢ 2 N1
% 1 2 4 2(N-1
Fr=— 1 (N-1)
Wi
1 U opN-D NN

Now consider the spectrum SpecC = (f-(&)). Because (¥ = 1, we obtain

M-1 M-1 M-1
5O =fe(@) =co+ (@) + - +ena @V =00 0) + Y 0V (@) + D00 = 3T 00T
— r= r=—(M-1)

In addition, 0® (), the Fourier transform of 0 (x) [8], can be expressed as

09 (@) =" (o + 2mn)[* (—)* (@ + 27n),

nez

which can be written as

é(k)((})) _ Z 0(k>(r)eir(”.
T
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Thus
M-1 ; M-1
. (k) (k) o ar W) (o oir(~28) _ Ak (52T
Aj(c)* Z 0 Z 9 ( ) = Z 0 (r)e (JN) =0 _JW .
r=—(M-1) r=—(M-1)
Therefore,

2i(Be) = 2Y0% (), ;= —j%”, j=0,1,....N-1.

(4) First, for /o we get

70(279By) Ze"

Then, consider the other eigenvalues 4;, for j = 1,...,N — 1.For By,,, we have
527 BBy o) = 092 () = 3 [ @(ey + 27m) [P (=i (w5 + 2n) M = 37 @y + 27m) P (— 1) () + 27m) 2 < 0.
nez nez

Therefore, By, is negative semidefinite.Similarly, for By, we have
527 By) = 099 (ay) = Y [y + 2mm) P (i) (y + 2mm) ™ = |p(ew; + 27n) P - 1+ (; + 27n)* > 0.
nez nez

Therefore, By is positive semidefinite. This completes the proof of Theorem 3.1. O

Combining (18) with the differentiation matrix B,, we arrive at the wavelet collocation semi-discretization for the non-
linear wave equation (2)

{ %uj(X,m t) = U](Xm, t)ﬂ
& v, £) = (BoUy)yy = F' (1 (X, 1)),
where m=0,1,...,N -1, U; = (;(Xo, t), (X1, 1), ..., uy(xy_1,t))". Note that the unknowns u;(x,,,t) and v;(xy, t) in (21) are

exactly the values of the approximate solution at the collocation points and no extra computation is required for the deter-
mination of the passage between wavelet coefficients and physical space.

(21)

Since B, is symmetric, the semi-discrete system (21) is a finite-dimensional Hamiltonian system [3,26]. Let

Z= (U, V])T, J= {_(;N Ig} then (21) can be rewritten as

Z;=]VzH(Z) (22)
with the Hamiltonian
1 1
H(U,, V) = 5 (V). V) + (F(UD. 1) = 5 (U, BaU)), (23)

where (-, -) is the standard inner product.
The Hamiltonian system (22) satisfies the semi-discrete symplectic conservation law
N-1

d

it Zodu,(xm, t) A dvy(Xm, t) = 0,
e

where A is the wedge product.

3.1.2. Symplectic methods for time discretization

The semi-discrete finite-dimensional Hamiltonian system (22) can be discretized in time by lots of symplectic methods,
such as generating function methods, Runge-Kutta methods, composition methods [18,24], and explicit symplectic schemes
for separable Hamiltonian systems. Here we consider Runge-Kutta methods. By noting f(Z) = JV;H(Z), a symplectic Runge-
Kutta method for the system (22) with s stage variables {K;} and coefficients {a;,}, {b;}, can be written as

N
Ki=Z"+71- 3 amf(Kn),
m 1<I<s,
7" = 7"+ - bf(K),
=1

where 7 is the time-step. When s =1, a;; = 1/2, b; =1, we have

n n+1
Zn+1 _ Zn +1T _]VZH <272>’
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which leads to the Euler-centered scheme in time, which is also known as the implicit midpoint scheme. In this paper, we
use this scheme for time discretization.

Integrating the semi-discrete system (21) in time by the Euler-centered scheme, we obtain a symplectic wavelet colloca-
tion method for the NLW equation (1):

U e 0
n+1 (24)
Vj”“:VJ"—I—T-(Bz UJ+U F/<U]+u ))
Suppose (U]’ﬂ V]”) are given. We first solve the following equation for V]”“,
1% + Vn+1 Vn +Vn+l
V]"*1V]"+r~<Bz~<U}1+r% S LR e B (25)
then UJ'*" are obtained as
Vn + Vn+1
Ut =Up A (26)

Remark. The SWCM (24) is equivalent to the following scheme by eliminating the value Vj,

Un+1 _ 2Un + Un—l Un+l + 2Un + Un—l Un+1 + Un Un—l + Un
J J J J J J 4 [ 2 J
p — B, 1 2 F 5 +F 5 : (27)

Although the SWCM (24) or (27) is an implicit scheme, the space differentiation matrix is sparse and iteration methods can
be used in solving, such as Newton Successive Over Relaxation Method (N-SOR) and fixed-point iteration method, which render
the proposed SWCM much efficient.

3.2. Theoretical analysis for SWCM

3.2.1. Convergence of SWCM

In this paper, our analysis is restricted to the SWCM using the Euler-centered scheme in time. We shall estimate the error
of the proposed SWCM and prove that the scheme is stable and convergent. First, the truncation error of the SWCM is con-
sidered. With | - | we will indicate the L?(a, b) norm.

Theorem 3.2. Suppose u(x,t) € H(a,b), s > 3, vt € [0,T], u(x,t) € C*(a,b), Vx € [a, b]. Let F(u) be a smooth function. Then the
truncation error R" of the SWCM (24) satisfies

HRn” < O(TZ +27](s—2)).

Proof. Let U" = (u(Xo, tn), U(X1,tn), ..., U(Xy_1,ty)) be the solution of (2). Based on Taylor expanding, the following equations
can be obtained,

Ut —2U" + UM = 72U + 0(1Y),
U™ 420" + UM = 4U" + 12U + 0(T%),

1 , Un+1+Un , Un—1+Un - 2 U[[ ) .
§<F<f +F| = | | -FU") =755 F'(U") + 0(c*).

Hence, the truncation error of the SWCM (24) goes as

R Un+1 _yn + Un—l B Un+1 +2Un + Un—1 +l F/ Un+1 + u" +F/ Un—] + u"
- 72 2 4 2 2 2

2 1 , Un+1 u" , Un—l u" .
— UL +0(1?) 7Bz<U”+%U?t+O(r4)) +2<F ( = ) +F< ~ )) — (U~ UL +F(U")

2 1 , Un+1 Un , Unfl Un .
=U", —B,U" - B, (%UQ) +5 <F <T+> +F <+)> —F(U") + 0(12)

—U", —B,U" - 72 GBZUQ) + 72 G un- F”(U”)) +0(12).

and
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From Lemma 2.1, we get
1t = Ot 2 < " — "}y < C2TEH

where || - | denotes the norm of Soblev space H’(a,b). Notice that

N-1 1/2
_ 2
o~ = {5227 ) - s
m=0
is the rectangle quadrature rule approximation to ||uf, — Ou"|| - Therefore, we get the error estimate

1BZU?t + 72 %U?,F”(U") +0(1%) < 027672 1 12),

IR"| < [|Uy = B2U"[| + 22

This completes the proof. O
Then, the following error estimate of the SWCM is obtained.

Theorem 3.3. Suppose u(x,t) and F(u) are the same as in Theorem 3.2 . Let U" and UJ” be the solutions of (2) and (27),
respectively, and e" = U" — U]”. Then the error estimate of the SWCM (24) at time T satisfies
T

el < O(z? + 2757, L=—.

Proof. The truncation error of the SWCM (24) can be written as

en+1 _ 26’” en—l en+1 2en en—l 1 , , - ,
R — 2 + —Bz< + . + )+§(F (U )+ F (Up72)) - P, (28)
Define
5 en+1/2 _ en+1 —en
! T

and make inner product of the both sides of (28) with §.e"*1/2 + §,e"1/2, it follows that

1 1

E (”(S[E"ﬂ/znz _ H(Sten—l/ZHZ) + % (<7B2€n+1/27 en+1/2> _ <7Bzen—1/27 en—1/2>)

1/, _ , .
_ 7<§ (F (U}Prl/Z) +F'(U]" 1/2)) _F (U"),éte"*”z + 5ten71/2> + <R”,5te””/2 + bte’””).

Next, define a discrete function W" as

W' = (0™ 2[ + [[e"|[> + €71 + (~Bye™ 12, €717,
In order to estimate W", several inequations are employed here. First, since F'(U) satisfies
‘F/(U]n+1/2> B F/(Un+1/2)H _ ||F’(U"+1/2 _ en+1/2) -~ F’(U"H/Z)H < C||e"“/2||,

where C = MaXyc(p cconF (U(X, 1)), it follows that
1

() P(07) - P ae e )

1 X 1 1. i
< CIE™ 2]+ e 2 )6 M2 + dee™ V|| < g C(lle™ M + 21" + fle™ ) + 5 C(lloe™ A + [loce™ ).

Then, from Theorem 3.2, the matrix —B, is symmetric and positive semidefinite, hence
(_Bzell+1/27en+1/2> > 0 (29)
In addition, notice that
HenHHZ - Hem]”z nl | on-1 n+1/2 n-1/2 n+112 2 n-12 S ont+1/22 S on-1/212
T = (€T e 6T 4 0 T) || (et e + [loce™ T + [loce™
Therefore, we have

-1 N 2 S n-1/2112 - . 2 ~1y2
W"— W' [l 2] — [loem 12| +<*Bz€'”‘/27e"*”2> (=Be" 12 en 1/2>+H€"”II — el

T T T T T

1

_ PN S pnt1/2 n-1/2 v (pnt1/2 v (=172 /o n+1/2 | 5 on-1/2 ||e”“|\2—He"*1||2
= (R0 4 0, 12) — (5 (F(UP2) 4 F(U]17)) = F(U™), 0012 4 gien 12 ) 4 25—

T

1 1. C ono
SIIRM® + o™ Y2 + flaee™ V21”4 £ C(lle™ M1* + 2[1€"” + fle™ " |*) + 5 C(lloe™ 2|1 + [loce™ 1 2|1%)

+ e + [l + llem P + [loce™ 22 + [|oe™ 22
<A+ G (Wh+ W),
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where C; = 2 +5. And the estimate of W* can be obtained by using Gronwall inequation [30],

L
W< (WO +1 ZA") eta, (30)
k=1
Because
e = IRI? = 0, [le"||* = O(z2 +- 27722,
we have

WO = 0(t? + 27722,
In addition, from Theorem 3.2, we have
A = ||R"|? = 0(z? +2762)%,
And based on the Gronwall inequation, it follows that
W= ||6te””2\|2 " ”eL”Z + e+t Hz 4 (—Byelt172 el+172y < C. O(1% + 27](372))2.
Finally, we have obtained the error estimate as
et < O(z? 4+ 2772y,
This completes the proof. O

In a similar deductive procedure, a symplectic wavelet collocation method using s-stage Runge-Kutta method for time
discretization has 2s-order in time.

3.2.2. Conservation of discretized Hamiltonian and momentum

3.2.2.1. Discretized Hamiltonian. Assume F”(u) and u, have uniform bounds both in space and time, then the following error
estimate of the Hamiltonian holds.

Theorem 3.4. Using the symplectic wavelet collocation method (24), we have
|hH} — hHy| = 0(22), L=—.

Proof. Suppose (U}, V)) is the solution of the symplectic wavelet collocation method (24), and define H;‘f” 2 as
H, (U;H/Z,VJ"”/Z) _ <an+1/27v}1+1/2> + <F(U]"H/2),1> _ <U}M/2,BZU]"H/2>.

Then, by taking inner products of (27) with 2 (U]’””2 - U]"’”Z), we obtain

hHZﬂ/z th 172 _ h< (F(U”H/z) +F/(U" 1/2>),UJ"H/2 _ U]n—l/2> +h<F<U]"H/2> —F(U;71/2>,1>

N—1 un+1/2 Xm

—h [ nfm(( ))F’(u,)du—%<F <uj"“/2( )) +F’< 12 )))(ujnﬂ/z( ) 1/2(Xm)>:|
m=0 |1 Xm

hy [le’”( ) (7 ) = ) } —hg {f—F’” i) (1t (X, T ))37;3}

- = 12 ] ] - —~ m t\Am; tm )

where i, € [min (uj'"l/z (Xm), uj'”z(xm)>,max (uj'”z(xm),u]” ‘ 1/z(xm))], and t, € (t"'/2,t*1/2), Thus, the following estimate
holds

N-1

h

hCZ’L’

m=0

‘thH/z th 1/2’ <C-(b-a)-t

{—— F" (i) - (Ue(Xm, E))? - }

m=0

where C = MaXyeap)e01]
Therefore,

V(D) - (x5

L
|hH; — hHy| <223 |RHY 2 —hH 2 <2 (b— @) T+ 72 = O().
n=1

This completes the proof. O
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3.2.2.2. Discretized momentum. The discrete momentum is hMy(Uj, V) with
Mw(U, Vy) = =V}, BiUp), GD

where B, is the wavelet collocation approximation to the first order derivative.

For a symmetric space discretization, the momentum is conserved through the integration for symmetric initial condi-
tions. Although it is not conserved for general initial conditions, it is approximated very well. The details have been discussed
in [3]. Now, the results associated with the wavelet collocation space discretization are proposed.

Case 1. Symmetric initial conditions

In this case, the initial value (Ug, Vo) satisfy

DUy =Uo, DV, =Vy,

where
0 0 - 1
0
D = .
1 :
1 -0

Theorem 3.5. Assume the initial condition is symmetric, and the wavelet collocation method is employed for space discretization,
it happens that

M (U (1), Vy(t)) = —=(Vy(t), B1Uj (1)) = 0.
Proof. As proved in Theorem 3.1, B, is a symmetric circulant matrix, we have

DB, = B,D.
Then, the solution of (21) is symmetric for any time t, and it satisfies
DU,(t) = U(t), t>0.
Consequently, V;(t) = Uj(t) is also symmetric, and
DV,(t) =V,(t), t>0.
In addition, B is an antisymmetric circulant matrix, thus
DBy = —B;D.
Therefore,
(V(£), B1Uj () = (DV;(t), DB1Uj(t)) = —(DV;(t), BiDUj(t)) = —(Vy(t), B1Uj (1)),

from which the theorem follows. [

Theorem 3.6. Under the hypothesis of Theorem 3.5, the numerical approximation (U]” Vf) at t, of system (21) given by sym-
plectic time integrator satisfies

M, (U7 V}) = (V}.B.U} ) = 0,
Case 2. General initial conditions

In this case, the continuous momentum does not vanish, but it is well approximated. The following estimate is obtained.

Theorem 3.7. Suppose u(x,t) € H*(a,b), vt € [0, T], and F(u) is a smooth function. Using the wavelet collocation discretization B,
in (19), it happens that

%Mvj(t)vBlU](t» <o),
Proof. Since B; and B,B; are antisymmetric (proved in Theorem 3.1), we have
(B,U;,B1Uj) = U]TBzBlU] = (U}, B,B1U)) =0,

then



H. Zhu et al./Journal of Computational Physics 229 (2010) 2550-2572 2561

%MVJU% B1Uj(6)) = h(B2Uj(t) — F'(Uj(t)), B1Uj(6)) + (V) (1), B1V; (1)) = h(BoUj(t) — F'(Uj (1)), B1Uj (1))
= h(F' (U(1)), B1Uj(1)).
Notice that h(F'(Uj(t)), BiUj(t)) is the rectangle quadrature rule approximation to jff](t)dx , where
, d
[i(t) = F () 7, Fw (D).

As u;(t) is periodic in [a, b], fff,(t)dx = 0. Denote the approximation by Qg (fj(t)), it follows that

b b b b
Quf(0) = Qulhth)) = [ BeeNdx= [ @) ~fiendx+ [ o= [ aue) - hendx

Since u(x, t) € H'(a,b), Vt € [0, T], then, f;(t) € H'(a,b), Vt € [0, T]. According to Lemma 2.1, it can be concluded that

b
/a (L) = f(£))dx < 027,

Therefore, the theorem is valid since Qg(f;(t)) < 027°™"). O

4. Symplectic wavelet collocation method for the NLS equation

We briefly consider the NLS equation
iUy + U + Blul’u =0, (32)

where > 0 is a constant parameter. Let u(x, t) = p(x, t) + iq(x, t), where p(x, t) and q(x, t) are real functions, the Hamiltonian
formulation of (32) is

P =~ — B(P* +4°)4, (33)
q; = Pw + B(P* +@°)p.

In this system, the following global quantities are conserved [3]

l oo
HZE/, {piwﬁ—g(pzwz)z dx,

‘1 o0
h=-y [ 9+ alax
1 00
L=5 / [Pq, — qp,Jdx.

After wavelet collocation discretization in space, (33) becomes

{gfp](xmv t) = —(B2Qy)n — B(D;(Xm, t)z + q;(Xm, t)z)QJ(Xm t), (34)

4Gy (Xm, t) = (BaP))yy + B(D) (X, ) + Gy (Xm, £)°)D) (X, 1),

where Xp=a+m/2, m=0,1,....N-1, N=(b-a)-2 and P; = (p;(x,t),p;(x1,1),....,p;(xn1,1))", Q = (q)(X0, ), q(x1,
t),...,q;(Xn_1,t)) . Discretizing this system by the Euler-centered scheme in time, we obtain the standard symplectic wavelet
collocation method for the NLS equation:

P]n+1 _ P]n _ ‘E(Bz . Q]n+l/2 +/3<<P}H1/2>~2 4 <Q]n+1/2>.2) . ]n+1/2)7

an+1 —Q+ ’E(Bz .P-;Hl/z " ﬂ(<Q]n+l/2)] " (P]nﬂ/z)‘z) _P}m/z), (35)

where
P]"“/z _ P} +2P]"+] 7 (Pjnﬂ/z); _ <P7+1/2)T<P]"“/2>.

The discrete Hamiltonian is

Hu(P ) = —3 [ (@ B2 + (P BaP) + 5 (12 +.Q,2)% 1),
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According to the results in [3], the following results can be easily obtained for the special properties of the space differen-
tiation matrix:

(R1) For wavelet collocation method, B, is symmetric,

=~ [P + (@ Q)

is a first integral of semi-discretization Hamiltonian system (34).
(R2) As B, is symmetric, by using symplectic Runge-Kutta method for time discretization, it happens that

hliy (P]".,QJ") —hly (P;’,Qf) =0, n>0.
What's more, the discretization of the continuous invariant I, is

s = 5 [P BiQ) — (@ By (36)

Then, exactly in the same way as in Theorem 3.5, the following result holds.
(R3) Assume the initial condition is symmetric, when the wavelet collocation method is taken for space discretization, it
happens that

2a(P1. Q) = 3 (P BiQy) ~ (Qy.BiPy)] =O0. 37)

Also after full discretization, similar to Theorem 3.6, we can gain the following result.
(R4) Under hypothesis of (R3), the numerical approximation (P”, Q,”) at t, of system (34) given by symplectic time inte-
grator satisfies

L (P,", Q]") —0.
In the following section, various numerical experiments will be conducted to substantiate the above theoretical analysis.

5. Numerical investigation for the NLW and NLS equations

In this section, numerical experiments are presented for the NLW and NLS equations to illustrate the following numerical
characters of the proposed SWCM: (1) high order of accuracy; (2) long time simulation; (3) conservation of invariants; (4)
singularity capturing.

For convenience, the SWCM taking B, based on the autocorrelation function of Daubechies scaling function DM is called
SWCM with ADM (abbr. SWCM-ADM).

5.1. Numerical simulation for the NLW equation

To gain insight into the performance of the proposed SWCM (24) for the NLW equation (2), the following numerical
experiments are performed. To show the advantage of the proposed method, a singular linear problem is considered in
Example 5.1. Space and time accuracy of the SWCM-AD10 is tested and SWCM is compared with other methods with differ-
ent spatial discretization. To illustrate the properties of the SWCM in long time simulating and invariants conserving, long
time simulation are made for the NLW equation and the errors in invariants are given in Examples 5.2 and 5.3. In addition,
symmetric and nonsymmetric initial conditions are simulated to confirm the results about conservation of invariants and the
SWCM-AD10 is used for solving those problems.

Example 5.1. An accuracy test is taken by considering the linear wave equation

Upt = Uy (38)
with symmetric initial conditions

u(x,0) = f(x) = exp(—3200x%), v(x,0)=0. (39)

This problem is singular and the true solution is

u(x,t) =%[f(x+t) +f(x—1).

First, the problem is considered in the spatial interval [-1,1] till time T = 0.6 for accuracy test. Fixed-point iteration
method with tolerance 107 is used to solve (24). The space and time accuracy of the SWCM (24) with AD10 are tested.
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The % and L™ errors, as well as the numerical order of accuracy, are contained in Tables 1 and 2. As expected, the errors
decrease at an exponential rate with respect to the space grid number N. For example, the L™ error decreases from
5.1928 x 1072 to 1.0387 x 10~% when N changes from 128 to 1024. In addition, the scheme has second-order of accuracy
in time, which agrees with Theorem 3.3.

For the purpose of numerical comparisons, we consider a symplectic Fourier pseudospectral method (abbr. SFPSM), which
uses the pseudospectral scheme in space and the Euler-centered scheme in time, and a symplectic finite difference method
(abbr. SFDM), which uses the fourth-order central difference scheme in space and the Euler-centered scheme in time. SWCM
is compared with those methods from spatial accuracy and CPU time aspects. Table 3 shows the numerical errors and CPU
time of SWCM (with different ADM), SFPSM and SFDM. SWCM is of higher order of accuracy than SFDM. The errors of SWCM
decrease in an exponential rate in space for each ADM and the decreasing rate is increasing when M becomes larger. In
addition, for a given grid number N, the errors of SWCM will approximate to those of SFPSM when M becomes larger.
Moreover, SWCM-AD20 with N = 512 takes less CPU time than SFPSM with N = 256, which tell us that SWCM is more
efficient than SFPSM to obtain similar approximation for this singular problem. Furthermore, the errors of SFPSM increase
when N changes from 256 to 512, while the errors of SWCM are still decrease rapidly. These numerical results seems to
reveal that SWCM takes a good balance of accuracy (SFPSM) and efficiency (SFDM).

Second, the problem is solved in [-1, 1] till T = 100 with periodic boundary condition by using SWCM-AD20. As shown in
Fig. 2, the problem is well simulated, the two wave forms of smaller amplitudes travel in opposite directions and meet at
x = +1 or x = 0. This result is obtained by taking T = 0.0001 and N = 512.

Example 5.2. Consider the kink-antikink solution of the sine-Gordon equation [5]
U = Uyy — SiN(u) (40)

with symmetric initial conditions

Up(x) =0, wvp(x) = 4ysech(yx). (41)
Table 1
Space accuracy test of the SWCM-AD10 for (38) with initial condition (39) (t = 0.0000002).
J N Error Order
L= L L= L?
6 128 0.1542 5.1928e-2 - -
7 256 3.3477e-2 9.7851e-3 2.2036 2.4079
8 512 9.0917e-4 1.8943e-4 5.2025 5.6908
9 1024 5.4464e—6 1.0387e—-6 7.3831 7.5107
Table 2
Time accuracy test of the SWCM-AD10 for (38) with initial condition (39) (J =9, N = 1024).
T Error Order
L® 2 L® 12
0.0004 2.8313e-3 5.8908e—-4 - -
0.0002 7.0068e—4 1.4702e-4 2.0146 2.0025
0.0001 1.7273e-4 3.6407e-5 2.0202 2.0137
0.00005 4.0642e-5 8.7782e—6 2.0875 2.0522
Table 3
Comparison of the SWCM, SFPSM and SFDM for (38) with initial condition (39) (t = 0.0000002).
SWCM-AD10 SWCM-AD20 SWCM-AD30 SFPSM SFDM
N =128
L., errors 0.15 5.70E-02 4.31E-02 6.19E-03 0.18
L, errors 5.19E-02 2.28E-02 1.63E-02 3.88E-03 5.73E-02
CPU (s) 442 .81 836.03 1230.42 2296.58 177.77
N =256
L., errors 3.35E-02 2.59E-03 5.33E-04 8.78E-06 6.86E—-02
L, errors 9.79E-03 6.87E-04 1.62E-04 9.41E-06 1.54E-02
CPU (s) 889.14 1734.31 2526.36 8886.75 358.19
N =512
L. errors 9.09E-04 7.85E—-07 5.93E-09 3.46E-05 6.99E-03
L, errors 1.89E-04 1.53E-07 1.27E-09 3.77E-05 1.38E-03

CPU (s) 1988.19 3896.39 6173.52 215981.06 760.03
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Here y = 20 is taken. These initial conditions correspond to two-soliton waves moving with speed ¢ = +1 in space and the
waves have large spatial gradients. This problem is solved in [-30, 30] till time T = 200 by SWCM-AD10 with T = 0.0005 and
N = 3840. Fixed-point iteration method with tolerance 10~'° is used and CPU time is about 2776 s. As shown in Fig. 3, the

Fig. 2. The wave propagation of (38) with initial condition (39), using SWCM-AD20 (t = 0.0001, N = 512).
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Fig. 3. Waveforms at t = 140, 150, 160, 180, 200 and the wave propagation of (40) with initial condition (41) over time interval [0,200], using SWCM-AD10
(t =0.0005, N = 3840).
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wave propagation is Well simulated by the proposed method. In addition, Fig. 4 shows the variation of the errors in Hamil-
tonian and momentum in the time interval [0,200]. The error in momentum is less than 4.0 x 10~°, which is negligible.
While the error in Hamiltonian is less than 2.5 x 107>, And the pronounced spikes in the error of Hamiltonian correspond
to the two kinks meet at x = +30 or x = 0.

Example 5.3. Consider the nonlinear wave equation (1) with
F(u) =0.1u* (42)
and nonsymmetric initial conditions

ge%—g, () =% ~2. xe[0,2m) (43)

By taking a coordinate transform x = 7¢é, Eq. (1) can be transformed into

Up(X) =

1 )
_ufi_F(u)v 66[072}

U =
2

Then, the problem is solved till time T = 200 by SWCM-AD10 with 7 = 0.002 and N = 64. Fig. 5 shows the variation of the
errors in Hamiltonian and momentum in the time interval [0,200]. The error in Hamiltonian is less than 7.05 x 10°%, while

the error in momentum # less than 4.65 x 10~ ".

Table 4 shows the L* errors of Hamiltonian and momentum, which mean the maximum errors in the time interval. For
this nonsymmetric initial conditions, the error in momentum depends only on the space step h and decreases exponentially
in space, which agrees with Theorem 3.7; while the error in Hamiltonian depends ¢nly on the chosen time-step 7 and is
second-order in 7, which agrees with Theorem 3.4.
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The above numerical simulations show that the proposed SWCM not only has high order of accuracy but also has good
properties in long time simulation and conservation of invariants. In the following subsection, we will present its
generalization to the NLS equation, which has some more singular and complex problems being difficult to simulate.

5.2. Numerical simulation for the NLS equation

In this subsection, one soliton solution, bound state solution and homoclinic structure of the NLS equation are simulated
in Examples 5.4-5.6. In Example 5.4, space and time accuracy of the SWCM-AD10 is tested and SWCM is also compared with
SFPSM and SFDM as that of the NLW equation. And for this nonsymmetric initial condi